Giải bài 5 trang 18 SGK Toán 10 tập 1 – Cánh diều

2024-09-14 10:24:20

Đề bài

Tìm \(D = E \cap G\) biết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau:

a) \(2x + 3 \ge 0\) và \( - x + 5 \ge 0\)

b) \(x + 2 > 0\) và \(2x - 9 < 0\)

Phương pháp giải - Xem chi tiết

Bước 1: Giải hai bất phương trình, xác định hai tập hợp E và G.

Bước 2: Xác định \(D = E \cap G = \{ x \in E|x \in G\} \)

Lời giải chi tiết

a) Ta có: \(2x + 3 \ge 0 \Leftrightarrow x \ge \frac{{ - 3}}{2}\)

\( \Rightarrow \) Tập hợp E là: \(E = \left\{ {x \in \mathbb{R}|x \ge \frac{{ - 3}}{2}} \right\}\)

và \( - x + 5 \ge 0 \Leftrightarrow x \le 5\)

\( \Rightarrow \) Tập hợp G là \(G = \left\{ {x \in \mathbb{R}|x \le 5} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x \ge \frac{{ - 3}}{2}\) và \(x \le 5\)} \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\}\)

Vậy tập hợp D \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\} = [\frac{{ - 3}}{2}; 5]\)

b) Ta có: \(x + 2 > 0 \Leftrightarrow x>-2\)

\( \Rightarrow E = \left\{ {x \in \mathbb{R}|x >-2 }\right\}\)

và \( 2x - 9 < 0 \Leftrightarrow x < \frac{9}{2}\)

\( \Rightarrow G = \left\{ {x \in \mathbb{R}|x < \frac{9}{2}} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x > -2 \) và \(x < \frac{9}{2}\)} \( = \left\{ {x \in \mathbb{R}|-2

Vậy \( D= \left\{ {x \in \mathbb{R}|-2

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"