Lý thuyết Dấu của tam thức bậc hai - SGK Toán 10 Cánh diều

2024-09-14 10:25:19

1. Định lí về dấu của tam thức bậc hai

Cho tam thức bậc hai \(f(x) = a{x^2} + bx + c\) với \(a \ne 0,\Delta  = {b^2} - 4ac.\)

+ \(\Delta  < 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}\)

+ \(\Delta  = 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}{\rm{\backslash }}\left\{ {\frac{{ - b}}{{2a}}} \right\}\)

+ \(\Delta  < 0\): f(x) có 2 nghiệm \({x_1},{x_2}({x_1} < {x_2})\)

 

2. Ví dụ

Xét dấu của tam thức bậc hai: \(f(x) = 2{x^2} + 3x - 2\)

Giải:

\(\Delta  = {3^2} - 4.2.( - 2) = 25 > 0\)

Tam thức bậc hai \(f(x) = 2{x^2} + 3x - 2\) có hai nghiệm phân biệt \({x_1} =  - 2,{x_2} = \frac{1}{2}\) và hệ số \(a = 2 > 0\)

Ta có bảng xét dấu \(f(x)\) như sau:

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"