Lý thuyết Bất phương trình bậc hai một ẩn - SGK Toán 10 Cánh diều

2024-09-14 10:25:25

I. Bất phương trình bậc hai một ẩn

+) Bất phương trình bậc hai một ẩn có dạng \(a{x^2} + bx + c < 0;a{x^2} + bx + c \le 0;a{x^2} + bx + c > 0;a{x^2} + bx + c \ge 0\) (\(a,b,c \in \mathbb{R};a \ne 0\))

+) Số \({x_0} \in \mathbb{R}\) thỏa mãn BPT được gọi là nghiệm.

II. Giải bất phương trình bậc hai một ẩn

1. Giải bằng cách xét dấu tam thức bậc hai

Bước 1: Xác định dấu của a và tìm nghiệm của f(x) (nếu có)

Bước 2: Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị x sao cho f(x) thỏa mãn yêu cầu đề bài.

+ \(\Delta  < 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}\)

+ \(\Delta  = 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}{\rm{\backslash }}\left\{ {\frac{{ - b}}{{2a}}} \right\}\)

+ \(\Delta  > 0\): f(x) có 2 nghiệm \({x_1},{x_2}({x_1} < {x_2})\)

2. Giải bằng cách sử dụng đồ thị

+) Nghiệm của BPT \(a{x^2} + bx + c > 0\) là tập hợp x ứng với phần Parabol \(y = a{x^2} + bx + c\) nằm phía trên trục hoành.

+) Nghiệm của BPT \(a{x^2} + bx + c < 0\) là tập hợp x ứng với phần Parabol \(y = a{x^2} + bx + c\) nằm phía dưới trục hoành.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"