Giải bài 5 trang 61 SGK Toán 10 tập 1 – Cánh diều

2024-09-14 10:25:35

Đề bài

Vẽ đồ thị của mỗi hàm số sau:

a) \(y = {x^2} - 3x - 4\)

b) \(y = {x^2} + 4x + 4\)

c) \(y =  - {x^2} + 2x - 2\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định tọa độ đỉnh \(\left( {\frac{{ - b}}{{2a}};\frac{{ - \Delta }}{{4a}}} \right)\)

Bước 2: Vẽ trục đối xứng \(x =  - \frac{b}{{2a}}\)

Bước 3: Xác định một số điểm đặc biệt, chẳng hạn giao điểm với trục tung (0;c) và trục hoành (nếu có), điểm đối xứng với điểm (0;c) qua trục \(x =  - \frac{b}{{2a}}\).

Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số \(y = a{x^2} + bx + c\).

Lời giải chi tiết

a) \(y = {x^2} - 3x - 4\)

Đồ thị hàm số có đỉnh \(I\left( {\dfrac{3}{2}; - \dfrac{{25}}{4}} \right)\)

Trục đối xứng là \(x = \dfrac{3}{2}\)

Giao điểm của parabol với trục tung là (0;-4)

Giao điểm của parabol với trục hoành là (-1;0) và (4;0)

Điểm đối xứng với điểm (0;-4) qua trục đối xứng \(x = \frac{3}{2}\) là (3;-4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) \(y = {x^2} + 4x + 4\)

Đồ thị hàm số có đỉnh \(I\left( { - 2;0} \right)\)

Trục đối xứng là \(x =  - 2\)

Giao điểm của parabol với trục tung là (0;4)

Giao điểm của parabol với trục hoành là I(-2;0)

Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x =  - 2\) là (-4;4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) \(y =  - {x^2} + 2x - 2\)

Đồ thị hàm số có đỉnh \(I\left( {1; - 1} \right)\)

Trục đối xứng là \(x = 1\)

Giao điểm của parabol với trục tung là (0;-2)

Điểm đối xứng với điểm (0;-2) qua trục đối xứng \(x = 1\) là (2;-2)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"