Giải bài 4 trang 71 SGK Toán 10 tập 1 – Cánh diều

2024-09-14 10:25:41

Đề bài

Tính giá trị đúng của các biểu thức sau (không dùng máy tính cầm tay):

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Phương pháp giải - Xem chi tiết

a)

Bước 1: Tìm \(\cos {0^o};\cos {120^o}\) dựa vào bảng giá trị lượng giác của một số góc đặc biệt

Bước 2: Tính \(\cos {140^o}\) theo \(\cos {40^o}\) dựa vào công thức: \(\cos \alpha  =  - \cos \left( {{{180}^o} - \alpha } \right)\)

Bước 3: Rút gọn biểu thức.

b)

Bước 1: Tìm \(\sin {150^o};\sin {180^o}\) dựa vào bảng giá trị lượng giác của một số góc đặc biệt

Bước 2: Tính \(\sin {175^o}\) theo \(\sin {5^o}\) dựa vào công thức: \(\sin \alpha  = \sin \left( {{{180}^o} - \alpha } \right)\)

Bước 3: Rút gọn biểu thức.

c)

Bước 1: Tính \(\sin {75^o}\) theo \(\cos {15^o}\) dựa vào công thức: \(\sin \alpha  = \cos \left( {{{90}^o} - \alpha } \right)\)

Bước 2: Tính \(\sin {55^o}\) theo \(\cos {35^o}\) 

Bước 3: Rút gọn biểu thức.

d)

Bước 1: Tính \(\tan {115^o}\) theo \(\tan {65^o}\) dựa vào công thức: \(\tan \alpha  =  - \tan \left( {{{180}^o} - \alpha } \right)\)

Bước 2: Tính \(\tan {65^o}\) theo \(\cot {25^o}\) dựa vào công thức: \(\tan \alpha  = \cot \left( {{{90}^o} - \alpha } \right)\)

Bước 3: Rút gọn biểu thức.

e)

Bước 1: Tính \(\cot {100^o}\) theo \(\cot {80^o}\) dựa vào công thức: \(\cot \alpha  =  - \cot \left( {{{180}^o} - \alpha } \right)\)

Bước 2: Tính \(\cot {80^o}\) theo \(\tan {10^o}\) dựa vào công thức: \(\cot \alpha  = \tan \left( {{{90}^o} - \alpha } \right)\)

Bước 3: Rút gọn biểu thức.

Lời giải chi tiết

a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\cos {0^o} = 1;\;\cos {120^o} =  - \frac{1}{2}\)

Lại có: \(\cos {140^o} =  - \cos \left( {{{180}^o} - {{40}^o}} \right) =  - \cos {40^o}\)  

\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)

b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)

Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:

 \(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)

Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)  

\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)

c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)

Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)

\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)

d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)

Ta có: \(\tan {115^o} =  - \tan \left( {{{180}^o} - {{115}^o}} \right) =  - \tan {65^o}\)

Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)

\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)

e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)

Ta có: \(\cot {100^o} =  - \cot \left( {{{180}^o} - {{100}^o}} \right) =  - \cot {80^o}\)

Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o}  =- \tan {10^o}\)

\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"