Giải bài 4 trang 87 SGK Toán 10 tập 1 – Cánh diều

2024-09-14 10:26:03

Đề bài

Cho hình hình hành ABCD, gọi O là giao điểm của AC và BD. Các khảng định sau đúng hay sai?

a)  \(|\overrightarrow {AB}  + \overrightarrow {AD} |\; = \;|\overrightarrow {AC} |\)

b) \(\overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {CB} \)

c) \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OC}  + \overrightarrow {OD} \)

Phương pháp giải - Xem chi tiết

Nhắc lại:

+) quy tắc hình bình hành: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) với ABCD là hình bình hành.

+) Tổng hai vecto: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)\( \Leftrightarrow \overrightarrow {AC}  - \overrightarrow {AB}  = \overrightarrow {BC} \) với 3 điểm A, B, C bất kì.

+) Vecto đối: \(\overrightarrow {BA}  =  - \overrightarrow {AB} \)

Lời giải chi tiết

 

a)  Theo quy tắc hình bình hành ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

 \( \Rightarrow |\overrightarrow {AB}  + \overrightarrow {AD} |\; = \;|\overrightarrow {AC} |\)

Vậy mệnh đề này đúng.

b) Ta có: \(\overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD}  = \overrightarrow {BC}  \ne \overrightarrow {CB} \)

Vậy mệnh đề này sai.

c) Ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OC}  + \overrightarrow {OD} \)\( \Leftrightarrow \overrightarrow {OA}  - \overrightarrow {OD}  + \overrightarrow {OB}  - \overrightarrow {OC} =  \overrightarrow {0} \Leftrightarrow \overrightarrow {DA}  + \overrightarrow {CB} =\overrightarrow {0}\Leftrightarrow 2\overrightarrow {CB} =\overrightarrow {0} \)

Vậy mệnh đề này sai.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"