Lý thuyết Tích của vecto mới một số - SGK Toán 10 Cánh Diều

2024-09-14 10:26:11

I. ĐỊNH NGHĨA

+) Tích của một vecto \(\overrightarrow a  \ne \overrightarrow 0 \) với một số thực \(k\) là một vecto, kí kiệu là \(k\overrightarrow a .\)

+) Vecto \(k\overrightarrow a \) có độ dài bằng \(\left| k \right|\left| {\overrightarrow a } \right|\) và

 Cùng hướng với vecto \(\overrightarrow a \) nếu \(k > 0\)

 Ngược hướng với vecto \(\overrightarrow a \) nếu \(k < 0\)

II. TÍNH CHẤT

+) Với hai vecto \(\overrightarrow a ,\overrightarrow b \) và hai số thực \(k,t\) ta luôn có:

\(\begin{array}{l}k(t\overrightarrow a ) = (kt)\;\overrightarrow a \\(k + t)\,\overrightarrow a  = k\overrightarrow a  + t\overrightarrow a \\k(\overrightarrow a  + \overrightarrow b ) = k\overrightarrow a  + k\overrightarrow b ;\quad k(\overrightarrow a  - \overrightarrow b ) = k\overrightarrow a  - k\overrightarrow b \\1\;\overrightarrow a  = \overrightarrow a ;\;\;( - 1)\;\overrightarrow a  =  - \,\overrightarrow a \end{array}\)

III. MỘT SỐ ỨNG DỤNG

1. Trung điểm của đoạn thẳng:

I là trung điểm của AB \( \Leftrightarrow \overrightarrow {IA}  + \overrightarrow {IB}  = \overrightarrow 0 \)

Với M bất kì, \( \overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \)

2. Trọng tâm của tam giác:

G là trọng tâm \(\Delta ABC\) \( \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

Với M bất kì \( \overrightarrow {MA}  + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)

3. Điều kiện để hai vecto cùng phương; 3 điểm thẳng hàng

+ \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương \(\Leftrightarrow \exists k: \overrightarrow a  = k\overrightarrow b .\) 

+ A, B, C thẳng hàng \( \Leftrightarrow \overrightarrow {AB}  = k\overrightarrow {AC} .\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"