Lý thuyết Tích vô hướng của hai vecto - SGK Toán 10 Cánh diều

2024-09-14 10:26:18

I. ĐỊNH NGHĨA

1. Tích vô hướng của hai vecto có dùng điểm đầu

+ \( (\overrightarrow {OA}, \overrightarrow {OB})\) là góc giữa hai tia OA, OB.

+ Tích vô hướng \(\overrightarrow {OA}.\overrightarrow {OB}=|\overrightarrow {OA}|.|\overrightarrow {OB}|.\cos (\overrightarrow {OA}, \overrightarrow {OB}) \)

2. Tích vô hướng của hai vecto tùy ý

Cho hai vecto \( \overrightarrow {a}, \overrightarrow {b}\) khác \( \overrightarrow {0}\). Lấy điểm O bất kì, vẽ \(\overrightarrow {OA}  = \overrightarrow a \) và \(\overrightarrow {OB}  = \overrightarrow b \).Khi đó

+ \(\left( {\;\overrightarrow a ,\overrightarrow b } \right) = (\overrightarrow {OA}, \overrightarrow {OB})\).

+ \(\overrightarrow {a}.\overrightarrow {b}=|\overrightarrow {a}|.|\overrightarrow {b}|.\cos (\overrightarrow {a}, \overrightarrow {b}) \)

* Chú ý:

+) \((\overrightarrow a ,\overrightarrow b) =(\overrightarrow b ,\overrightarrow a ) \)

+) \(\left( {\;\overrightarrow a ,\overrightarrow 0 } \right) = \alpha \) tùy ý, với \({0^ \circ } \le \alpha  \le {180^ \circ }\)

+) \(\left( {\;\overrightarrow a ,\overrightarrow v } \right) = {90^ \circ } \Leftrightarrow \overrightarrow a  \bot \overrightarrow b \). Đặc biệt: \(\overrightarrow 0  \bot \overrightarrow a \;\;\forall \overrightarrow a \;\)

II. TÍCH CHẤT

Cho 3 vecto \(\overrightarrow u ,\overrightarrow v ,\overrightarrow w \) bất kì và mọi số thực k, ta có:

\(\begin{array}{l}\overrightarrow u .\;\overrightarrow v \;\; = \overrightarrow v .\;\overrightarrow u \;\\\overrightarrow u .\;\left( {\overrightarrow v  + \overrightarrow w \;} \right)\; = \overrightarrow u .\;\overrightarrow v \; + \overrightarrow u .\;\overrightarrow w \;\\\left( {k\overrightarrow u } \right).\overrightarrow v  = k.\left( {\overrightarrow u .\;\overrightarrow v \;} \right) = \overrightarrow u .\;\left( {k\overrightarrow v \;} \right)\end{array}\)

III. MỘT SỐ ỨNG DỤNG

1. Tính độ dài đoạn thẳng

\(A{B^2} = {\left| {\overrightarrow {AB} } \right|^2} = {\overrightarrow {AB} ^2}\)

2. Chứng minh hai đường thẳng vuông góc

\(AB \bot CD \Leftrightarrow \overrightarrow {AB} .\overrightarrow {CD}  = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"