Giải bài 5 trang 98 SGK Toán 10 tập 1 – Cánh diều

2024-09-14 10:26:21

Đề bài

Cho tam giác ABC. Chứng minh: \(A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = 0\)

Phương pháp giải - Xem chi tiết

+) Vecto \(\overrightarrow {AB} \) bất kì, ta có: \(A{B^2} = {\overrightarrow {AB} ^2}\).

+) Tính chất phân phối:  \({\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} )\)

Lời giải chi tiết

\(\begin{array}{l}A{B^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA}  = {\overrightarrow {AB} ^2} + \overrightarrow {AB} .\overrightarrow {BC}  + \overrightarrow {AB} .\overrightarrow {CA} \\ = \overrightarrow {AB} (\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} ) = \overrightarrow {AB} (\overrightarrow {AC}  + \overrightarrow {CA} ) = \overrightarrow {AB} .\overrightarrow 0  = 0.\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"