Giải bài 5 trang 54 SGK Toán 10 tập 2 – Cánh diều

2024-09-14 10:27:02

Đề bài

Em hãy tìm hiểu chiều cao của tất cả các bạn trong tổ và lập mẫu số liệu với kết quả tăng dần. Với mẫu số liệu đó, hãy tìm:

a) Số trung bình cộng, trung vị và tứ phân vị;

b) Khoảng biến thiên và khoảng tứ phân vị;

c) Phương sai và độ lệch chuẩn.

Phương pháp giải - Xem chi tiết

a) Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: \({X_1},{X_2},...,{X_n}\)

Bước 2: Số trung bình cộng : \(\overline x  = \frac{{{x_1} + {x_2} + ... + {x_n}}}{n}\) 

Bước 3: Trung vị \({Q_2} = {M_e} = \left\{ \begin{array}{l}{X_{k + 1}}\quad \quad \quad \quad \quad (n = 2k + 1)\\\frac{1}{2}({X_k} + {X_{k + 1}})\quad \;\,(n = 2k)\end{array} \right.\)

\({Q_1}\) là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

\({Q_3}\) là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)

b) Khoảng biến thiên: \(R = {X_n} - {X_1}\)

Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\)

c) Tính phương sai \({s^2} = \frac{1}{n}\left[ {{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}} \right]\)

Độ lệch chuẩn \(s = \sqrt {{s^2}} \)

Lời giải chi tiết

Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:

160

162

164

165

172

174

177

178

180

 a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:

160   162     164      165      172      174      177      178      180

Số trung bình cộng của mẫu số liệu trên là:

\(\overline x  = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)

Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)

 Tứ phân vị của mẫu số liệu trên là:

-  Trung vị của dãy 160   162  164   165 là: \({Q_1} = 163\)

- Trung vị của dãy  174   177  178   180 là: \({Q_3} = 177,5\)

- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)

b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)

Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)

c) Phương sai của mẫu số liệu trên là:

\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)

Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}}  \approx 7,13\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"