Giải bài 5 trang 92 SGK Toán 10 tập 2 – Cánh diều

2024-09-14 10:27:25

Đề bài

Tìm m sao cho đường thẳng 3x + 4y + m = 0 tiếp xúc với đường tròn

\({\left( {x + 1} \right)^2} + {\left( {y-2} \right)^2} = 4\) .

Phương pháp giải - Xem chi tiết

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta \) có phương trình \({\rm{a}}x + by + c = 0\left( {{a^2} + {b^2} > 0} \right)\) và điểm \(M\left( {{x_o};{y_0}} \right)\). Khoảng cách từ điểm M đến đường thẳng \(\Delta \), kí hiệu là \(d\left( {M,\Delta } \right)\) được tính bởi công thức: \(d\left( {M,\Delta } \right) = \frac{{\left| {{\rm{a}}{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Lời giải chi tiết

Để đường thẳng tiếp xúc với đường tròn thì \(d\left( {I,\Delta } \right) = R \Leftrightarrow \frac{{\left| {3.\left( { - 1} \right) + 4.2 + m} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 2 \Leftrightarrow \left[ \begin{array}{l}m = 5\\m =  - 15\end{array} \right.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"