Giải bài 9 trang 104 SGK Toán 10 tập 2 – Cánh diều

2024-09-14 10:27:33

Đề bài

Cho hai đường thẳng: \({\Delta _1}:\sqrt 3 x + y - 4 = 0,{\Delta _2}:x + \sqrt 3 y - 2\sqrt 3  = 0\)

a) Tìm tọa độ giao điểm của hai đường thẳng \({\Delta _1};{\Delta _2}\)

b) Tính số đo góc giữa hai đường thẳng \({\Delta _1};{\Delta _2}\)

Phương pháp giải - Xem chi tiết

a) Tọa độ giao điểm là nghiệm của hệ phương trình

b) Ta có: \(\cos \left( {{\Delta _1};{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\)

Lời giải chi tiết

a) Tọa độ giao điểm của hai đường thẳng  \({\Delta _1};{\Delta _2}\)là nghiệm  của hệ phương trình \(\left\{ \begin{array}{l}\sqrt 3 x + y - 4 = 0\\x + \sqrt 3 y - 2\sqrt 3  = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \sqrt 3 \\y = 1\end{array} \right.\)

b)  Ta có: \(\cos \left( {{\Delta _1};{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{2\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{2} \Rightarrow \left( {{\Delta _1};{\Delta _2}} \right) = {30^o}\)

Vậy số đo góc giữa hai đường thẳng \({\Delta _1};{\Delta _2}\) là \({30^o}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"