Giải bài 2.6 trang 23 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:07

Đề bài

Biểu diễn miền nghiệm của các hệ bất phương trình sau trên mặt phẳng tọa độ:

a) \(\left\{ {\begin{array}{*{20}{c}}{x \ge  - 1}\\{y \ge 0}\\{x + y \le 4}\end{array}} \right.\)

b) \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{y > 0}\\{x - y - 4 < 0}\end{array}} \right.\)

c) \(\left\{ {\begin{array}{*{20}{c}}{y \le 3}\\{x \le 3}\\{x \ge  - 1}\\{y \ge  - 2}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

-  Vẽ các hệ bất phương trình trên mặt phẳng tọa độ \(Oxy.\)

-  Nhìn vào đồ thị xác định miền nghiệm của hệ bất phương trình đã cho.

Lời giải chi tiết

a)      \(\left\{ {\begin{array}{*{20}{c}}{x \ge  - 1}\\{y \ge 0}\\{x + y \le 4}\end{array}} \right.\)

Xác định miền nghiệm của bất phương trình \(x \ge  - 1\) là nửa mặt phẳng bờ \(d:x =  - 1\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(y \ge 0\) là nửa mặt phẳng bờ \(Ox\) chứa điểm \(\left( {0;4} \right).\)

Xác định miền nghiệm của bất phương trình\(x + y \le 4.\)

Vẽ đường thẳng \({d_2}:x + y = 4\) trên mặt phẳng tọa độ \(Oxy.\)

Chọn \(O\left( {0;0} \right)\) là điểm không thuộc đường thẳng \({d_2}\) và thay vào biểu thức \(x + y,\) ta được \(0 + 0 = 0 < 4.\)

Do đó, miền nghiệm của bất phương trình \({d_2}:x + y = 4\) là nửa mặt phẳng bờ \({d_2}\) và chứa điểm \(O\left( {0;0} \right).\)

 

Vậy miền nghiệm của hệ bất phương trình trên là: \(\Delta ABC\) với \(A\left( { - 1;0} \right),\,\,B\left( {4;0} \right),\,\,C\left( { - 1;5} \right).\)

b)     \(\left\{ {\begin{array}{*{20}{c}}{x > 0}\\{y > 0}\\{x - y - 4 < 0}\end{array}} \right.\)

Xác định miền nghiệm của bất phương trình \(x > 0\) là nửa mặt phẳng bờ \(Oy\) chứa điểm \(\left( {1;0} \right)\) mà bỏ đi trục \(Oy.\)

Xác định miền nghiệm của bất phương trình \(y > 0\) là nửa mặt phẳng bờ \(Ox\) chứa điểm \(\left( {0;1} \right)\) mà bỏ đi trục \(Ox.\)

Xác định miền nghiệm của bất phương trình \(x - y - 4 < 0\).

Vẽ đường thẳng \({d_2}:x - y - 4 = 0\) trên mặt phẳng tọa độ \(Oxy.\)

Chọn \(O\left( {0;0} \right)\) không thuộc đường thẳng \({d_2}\) và thay vào biểu thức \(x - y - 4,\) ta được \(0 - 0 - 4 =  - 4 < 0.\)

Do đó, miền nghiệm của bất phương trình \(x - y - 4 < 0\) là nửa mặt phẳng bờ \({d_2}\) chứa điểm \(O\left( {0;0} \right)\) không kể \({d_2}\).

 

Miền nghiệm của hệ bất phương trình trên là phần không có gạch.

c)      \(\left\{ {\begin{array}{*{20}{c}}{y \le 3}\\{x \le 3}\\{x \ge  - 1}\\{y \ge  - 2}\end{array}} \right.\)

Xác định miền nghiệm của bất phương trình \(y \le 3\) là nửa mặt phẳng bờ \(d:y = 3\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(x \le 3\) là nửa mặt phẳng bờ \({d_1}:x = 3\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(x \ge  - 1\) là nửa mặt phẳng bờ \({d_3}:x =  - 1\) chứa điểm \(O\left( {0;0} \right).\)

Xác định miền nghiệm của bất phương trình \(y \ge  - 2\) là nửa mặt phẳng bờ \({d_4}:y =  - 2\) chứa điểm \(O\left( {0;0} \right).\)

 

Miền nghiệm của hệ bất phương trình trên là: hình chữ nhật \(ABCD\) với \(A\left( { - 1;3} \right),\,\,B\left( { - 1; - 2} \right),\,\,C\left( {3; - 2} \right),\,\,D\left( {3;3} \right).\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"