Giải bài 3.38 trang 43 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:30

Đề bài

Cho góc tù \(\alpha \) có \(\sin \alpha  = \frac{1}{3}.\)

a) Tính \(cos\alpha ,\,\,\tan \alpha ,\,\,\cot \alpha .\)

b) Tính giá trị của các biểu thức:

\(\) \(\begin{array}{l}A = \sin \alpha .\cot \left( {{{180}^ \circ } - \alpha } \right) + \cos \left( {{{180}^ \circ } - \alpha } \right).\cot \left( {{{90}^ \circ } - \alpha } \right).\\B = \frac{{3\left( {\sin \alpha  + \sqrt 2 .\cos \alpha } \right) - 2}}{{\sin \alpha  - \sqrt 2 .\cos \alpha }}.\end{array}\)

Phương pháp giải - Xem chi tiết

- Vì \({90^ \circ } < \alpha  < {180^ \circ }\) nên \(\cos \alpha  < 0,\,\,\tan \alpha  < 0,\,\,\cot \alpha  < 0.\)

-  Sử dụng các công thức giá trị lượng giác của các góc bù nhau, phụ nhua để tính giá trị của biểu thức.

Lời giải chi tiết

a)  Ta có: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\,\, \Rightarrow \,\,{\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = \frac{8}{9}\,\, \Rightarrow \,\,\cos \alpha  = \frac{{ - 2\sqrt 2 }}{3}.\)

Ta có: \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \sqrt 2 }}{4}\) và \(\cot \alpha  =  - 2\sqrt 2 \)

b) \(A = \sin \alpha .\cot \left( {{{180}^ \circ } - \alpha } \right) + \cos \left( {{{180}^ \circ } - \alpha } \right).\cot \left( {{{90}^ \circ } - \alpha } \right)\)

\(\begin{array}{l}A = \sin \alpha .\left( { - \cot \alpha } \right) + \left( { - \cos \alpha } \right).\tan \alpha \\A =  - \cos \alpha  + \left( { - \sin \alpha } \right) = \frac{{2\sqrt 2 }}{3} - \frac{1}{3} = \frac{{2\sqrt 2  - 1}}{3}.\end{array}\)

\(\begin{array}{l}B = \frac{{3\left( {\sin \alpha  + \sqrt 2 .\cos \alpha } \right) - 2}}{{\sin \alpha  - \sqrt 2 .\cos \alpha }}\\B = \frac{{3\left( {\frac{1}{3} - \sqrt 2 .\frac{{2\sqrt 2 }}{3}} \right) - 2}}{{\frac{1}{3} + \sqrt 2 .\frac{{2\sqrt 2 }}{3}}} = \frac{{ - 5}}{{\frac{5}{3}}} =  - 3.\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"