Giải bài 3.37 trang 43 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:30

Đề bài

Một người đứng trên đài quan sát đặt ở cuối một đường đua thẳng. Ở độ cao 6m so với mặt đường đua, tại một thời điểm người đó nhìn hai vận động viên A và B dưới các góc tương ứng là \({60^ \circ }\) và \({30^ \circ },\) so với phương nằm ngang (H.3.6). Khoảng cách giữa hai vận động viên A và B (làm tròn đến hàng đơn vị, theo đơn vị mét) tại thời điểm đó là:

A. \(8m.\)

B. \(7m.\)

C. \(6m.\)

D. \(9m.\)

Phương pháp giải - Xem chi tiết

- Tính \(\widehat {AMB}\), \(\widehat {CMA}\) và \(\widehat {MBA}\)

- Tính \(MA\): \(MA = \frac{{MC}}{{\cos \widehat {CMA}}}.\)

- Chứng minh \(\Delta MAB\) cân tại \(A\) thì \(MA = AB\)

Lời giải chi tiết

Ta có: \(\widehat {AMB} = {60^ \circ } - {30^ \circ } = {30^ \circ }.\)

Ta có: \(\widehat {CMA} = {90^ \circ } - {60^ \circ } = {30^ \circ }.\)

Ta có: \(\widehat {CMB} = {30^ \circ } + {30^ \circ } = {60^ \circ }.\)

Xét \(\Delta CMB\) vuông tại \(C\) có: \(\widehat B = {90^ \circ } - \widehat {CMB} = {90^ \circ } - {60^ \circ } = {30^ \circ }\)

Xét \(\Delta CMA\) vuông tại \(C\) có: \(MA = \frac{{MC}}{{\cos \widehat {CMA}}} = \frac{6}{{\cos {{30}^ \circ }}} = 4\sqrt 3 \,\,m.\)

Xét \(\Delta ABM\) có \(\widehat {AMB} = \widehat B = {30^ \circ }\)

\( \Rightarrow \,\,\Delta ABM\) cân tại \(A\)

\( \Rightarrow \,\,AN = AB = 4\sqrt 3  \approx 7\,\,m\)

Chọn B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"