Giải bài 3.35 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:31

Đề bài

Tam giác \(ABC\) có \(\widehat A = {60^ \circ },\,\,AB = 3,\,\,BC = 3\sqrt 3 .\) Độ dài bán kính đường tròn nội tiếp của tam giác \(ABC\) là:

A. \(\frac{{3\left( {\sqrt 3  - 1} \right)}}{2}.\)

B. \(\frac{{3\left( {\sqrt 3  + 1} \right)}}{2}.\)

C. \(\frac{{\sqrt 3  - 1}}{2}.\)

D. \(\sqrt 3  - 1.\)

Phương pháp giải - Xem chi tiết

- Tính độ dài đoạn thẳng \(AC:\) \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}.\)

- Tính nửa chu vi và diện tích \(\Delta ABC\): \(S = \frac{1}{2}AB.AC.\sin A\)

- Tính bán kính đường tròn nội tiếp \(\Delta ABC\): \(S = pr.\)

Lời giải chi tiết

Độ dài đoạn thẳng \(AC\) là:

\(\begin{array}{l}\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \Leftrightarrow \frac{1}{2} = \frac{{9 + A{C^2} - 27}}{{6AC}}\\ \Leftrightarrow 2\left( {A{C^2} - 18} \right) = 6AC\\ \Leftrightarrow 2A{C^2} - 6AC - 36 = 0\\ \Leftrightarrow AC = 6.\end{array}\)

Nửa chu vi \(\Delta ABC\) là: \(p = \frac{{AB + AC + BC}}{2} = \frac{{3 + 6 + 3\sqrt 3 }}{2} = \frac{{9 + 3\sqrt 3 }}{2} = \frac{{3\sqrt 3 \left( {\sqrt 3  + 1} \right)}}{2}\)

Diện tích \(\Delta ABC\) là: \(S = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.3.6\sin {60^ \circ } = \frac{{9\sqrt 3 }}{2}.\)

Bán kính đường tròn nội tiếp \(\Delta ABC\) là:

\(r = \frac{S}{p} = \frac{{9\sqrt 3 }}{2}:\frac{{3\sqrt 3 \left( {\sqrt 3  + 1} \right)}}{2} = \frac{3}{{\sqrt 3  + 1}} = \frac{{3\left( {\sqrt 3  - 1} \right)}}{2}\)

Chọn A.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"