Giải bài 3.33 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:31

Đề bài

Tam giác \(ABC\) có \(AB = \sqrt 5 ,\,\,AC = \sqrt 2 ,\,\,\widehat C = {45^ \circ }.\) Độ dài cạnh \(BC\) bằng:

A. \(3.\)

B. \(2.\)

C. \(\sqrt 3 .\)

D. \(\sqrt 2 .\)

Phương pháp giải - Xem chi tiết

Áp dụng định lý cosin để tính \(BC\): \(\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\) xong giải phương trình với ẩn là \(BC.\)

Lời giải chi tiết

Độ dài cạnh \(BC\) là:

Áp dụng định lý cosin, ta có:

\(\begin{array}{l}\cos C = \frac{{A{C^2} + B{C^2} - A{B^2}}}{{2AC.BC}}\,\, \Leftrightarrow \,\,\cos {45^ \circ } = \frac{{2 + B{C^2} - 5}}{{2\sqrt 2 .BC}} = \frac{1}{{\sqrt 2 }}\\ \Leftrightarrow \,\,B{C^2} - 2BC - 3 = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{BC = 3}\\{BC =  - 1}\end{array}} \right.\end{array}\)

Vì \(BC > 0\) nên \(BC = 3.\)

Chọn A.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"