Giải bài 3.32 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:31

Đề bài

Tam giác \(ABC\) có diện tích \(S = 2R{}^2.\sin B.\sin C,\) với \(R\) là độ dài bán kính đường tròn ngoại tiếp tam giác. Số đo góc \(A\) bằng:

A. \({60^ \circ }\)

B. \({90^ \circ }\)

C. \({30^ \circ }\)

D. \({75^ \circ }\)

Phương pháp giải - Xem chi tiết

- Áp dụng định lý sin để tích các cạnh \(a,\,\,b,\,\,c\): \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)

- Tính diện tích \(\Delta ABC\): \(S = \frac{{abc}}{{4R}} = 2{R^2}.\sin B.\sin C\) rồi tính góc A.

Lời giải chi tiết

Áp dụng định lý sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\,\, \Rightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 2R.\sin A}\\{b = 2R.\sin B}\\{c = 2R.\sin C}\end{array}} \right.\\\end{array}\)

Diện tích \(\Delta ABC\) là:

\(S = \frac{{abc}}{{4R}} = \frac{{2R\sin A.2R\sin B.2R\sin C}}{{4R}} = 2{R^2}\sin A.\sin B.\sin C\)

mặt khác \(S = 2R{}^2.\sin B.\sin C\)

nên \(\sin A = 1\,\, \Rightarrow \,\,\widehat A = {90^ \circ }\)

Chọn B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"