Giải bài 3.30 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:32

Đề bài

Tam giác \(ABC\) có \(\widehat A = {45^ \circ },\,\,c = 6,\,\,\widehat B = {75^ \circ }.\)

Độ dài đường cao \({h_b}\) bằng:

A. \(3\sqrt 2 .\)

B. \(\frac{3}{{\sqrt 2 }}.\)

C. \(6\sqrt 2 .\)

D. \(2\sqrt 3 .\)

Phương pháp giải - Xem chi tiết

- Tính góc C của \(\Delta ABC\)

- Áp dụng định lý sin để tính cạnh b: \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)

- Tính diện tích \(\Delta ABC = \frac{1}{2}bc.\sin A\)

- Tính \({h_b} = \frac{{2{S_{\Delta ABC}}}}{b}\)

Lời giải chi tiết

Ta có: \(\widehat A + \widehat B + \widehat C = {180^ \circ }\,\, \Rightarrow \,\,\widehat C = {180^ \circ } - \widehat A - \widehat B = {60^ \circ }\)

Áp dụng định lý sin trong \(\Delta ABC\) ta có:

\(\begin{array}{l}\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\\ \Rightarrow \,\,b = \frac{{c.\sin B}}{{\sin C}} = \frac{{6.\sin {{75}^ \circ }}}{{\sin {{45}^ \circ }}} = 3 + 3\sqrt 3 \,\,\left( {dvdd} \right)\end{array}\)

Diện tích \(\Delta ABC\) là:

\({S_{\Delta ABC}} = \frac{1}{2}bc.\sin A = \frac{1}{2}.\left( {3 + 3\sqrt 3 } \right).6.\sin {45^ \circ } = \frac{{9\sqrt 6  + 9\sqrt 2 }}{2}\,\,\left( {dvdt} \right)\)

Ta có: \({S_{\Delta ABC}} = \frac{1}{2}{h_b}.b\,\, \Rightarrow \,\,{h_b} = \frac{{2{S_{\Delta ABC}}}}{b} \approx \frac{{2.\frac{{9\sqrt 6  + 9\sqrt 2 }}{2}}}{{3 + 3\sqrt 3 }} = 3\sqrt 2 \,\,\left( {dvdd} \right)\)

Chọn A.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"