Giải bài 3.23 trang 40 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:34

Đề bài

Trên mặt phẳng tọa độ \(Oxy,\) lấy điểm \(M\) thuộc nửa đường tròn đơn vị, sao cho \(\cos \widehat {xOM} = \frac{{ - 3}}{5}.\) (H.3.4). Diện tích của tam giác \(AOM\) bằng:

A. \(\frac{4}{5}.\)

B. \(\frac{2}{5}.\)

C. \(\frac{3}{5}.\)

D. \(\frac{3}{{10}}.\)

Lời giải chi tiết

Ta có: \(\cos \widehat {xOM} = \frac{{ - 3}}{5} \Rightarrow \sin \widehat {xOM} = \sqrt {1 - {{\left( {\frac{{ - 3}}{5}} \right)}^2}}  = \frac{4}{5}\)

Diện tích \(\Delta AOM\) là: \(S = \frac{1}{2}.OM.OA.sin AOM =  \frac{1}{2}.1.1.\frac{4}{5}  = \frac{2}{{5}}.\)

Chọn B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"