Giải bài 4.19 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:43

Đề bài

Cho tam giác \(ABC.\)

a)      Tìm điểm \(M\) sao cho \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0 \)

b)     Xác định điểm \(N\) thỏa mãn \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Lời giải chi tiết

a)      Giả sử tìm được điểm \(M\) sao cho \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0 \)

Gọi \(I\) là trung điểm của \(AB\) và \(J\) là trung điểm của cạnh \(CI\).

Ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \;\overrightarrow {MI}  + \overrightarrow {IA}  + \overrightarrow {MI}  + \overrightarrow {IB}  + 2\overrightarrow {MC}  = 2\overrightarrow {MI}  + 2\overrightarrow {MC}  = 4\overrightarrow {MJ} \)

Mặt khác \(\overrightarrow {MA}  + \overrightarrow {MB}  + 2\overrightarrow {MC}  = \overrightarrow 0 \)

\( \Rightarrow \) \(4\overrightarrow {MJ}  = \overrightarrow 0 \,\, \Rightarrow \,\,\overrightarrow {MJ}  = \overrightarrow 0 \,\, \Rightarrow \,\,M \equiv J\)

Vậy \(M\) là trung điểm của \(CI\).

b)     Giả sử tìm được điểm \(N\) thỏa mãn \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

Gọi \(K\) là trung điểm của \(AC\).

Ta có: \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = 2\left( {\overrightarrow {NA}  - \overrightarrow {NB} } \right) + \left( {\overrightarrow {NA}  + \overrightarrow {NC} } \right) + \overrightarrow {NA} \)

                                                     \(\begin{array}{l} = 2\overrightarrow {BA}  + \left( {\overrightarrow {NK}  + \overrightarrow {KB}  + \overrightarrow {NK}  + \overrightarrow {KC} } \right) + \overrightarrow {NA} \\ = 2\overrightarrow {BA}  + 2\overrightarrow {NK}  + \overrightarrow {NA} \end{array}\)

Gọi \(M\) là điểm thỏa mãn \(2\overrightarrow {MK}  + \overrightarrow {MA}  = 0\)

Khi đó: \(2\overrightarrow {NK}  + \overrightarrow {NA}  = 2\left( {\overrightarrow {NM}  + \overrightarrow {MK} } \right) + \overrightarrow {NM}  + \overrightarrow {MA}  = 3\overrightarrow {NM} \)

Do đó \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = 2\overrightarrow {BA}  + 3\overrightarrow {NM} \)

Mặt khác \(4\overrightarrow {NA}  - 2\overrightarrow {NB}  + \overrightarrow {NC}  = \overrightarrow 0 \)

\( \Rightarrow \) \(2\overrightarrow {BA}  + 3\overrightarrow {NM}  = \overrightarrow 0 \) \( \Leftrightarrow \) \(\overrightarrow {NM}  = \frac{2}{3}\overrightarrow {AB} \)    (1)

Lấy điểm \(P\) thuộc cạnh \(AB\) sao cho \(\overrightarrow {AP}  = \frac{2}{3}\overrightarrow {AB} \)    (2)

Từ (1) và (2) \( \Rightarrow \) \(\overrightarrow {NM}  = \overrightarrow {AP} \)

\( \Rightarrow \) tứ giác \(APMN\) là hình bình hành

Vậy điểm \(N\) cần tìm là đỉnh thứ tư của hình bình hành \(APMN\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"