Giải bài 4.14 trang 54 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:46

Đề bài

Cho tam giác \(OAB\) vuông cân, với \(OA = OB = a.\) Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA}  + \overrightarrow {OB} ,\,\,\overrightarrow {OA}  - \overrightarrow {OB} ,\,\,\overrightarrow {OA}  + 2\overrightarrow {OB} ,\,\,2\overrightarrow {OA}  - 3\overrightarrow {OB} .\)

Phương pháp giải - Xem chi tiết

-  Gọi \(D\) là điểm đối xứng với \(O\) qua \(B,\) \(F\) là điểm đối xứng với \(B\) qua \(D\) và \(G\) là điểm đối xứng với \(O\) qua \(A.\)

-  Vẽ hình vuông \(OACB\) và hình chữ nhật \(OAED\)

Lời giải chi tiết

+) Theo quy tắc hình bình hành, \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OC} \) với C là đỉnh thứ tư của hình bình hành \(OACB\)

Ta có: tứ giác \(OACB\) là hình bình hành

mặt khác \(\Delta OAB\) vuông cân tại \(A\)

nên tứ giác \(OACB\) là hình bình hành

\( \Rightarrow \) \(\left| {\overrightarrow {OC} } \right| = OC = \sqrt {O{A^2} + O{B^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

+) Ta có: \(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {BA} \)

Xét \(\Delta OAB\) vuông cân tại \(A\) có:

\( \Rightarrow \) \(\left| {\overrightarrow {AB} } \right| = AB = \sqrt {O{A^2} + O{B^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

+) Gọi điểm \(D\) là điểm đối xứng với \(O\) qua \(B\)

\( \Rightarrow \) \(2\overrightarrow {OB}  = \overrightarrow {OD} \) và \(OD = 2a.\)

Theo quy tắc hình bình hành, ta có: \(\overrightarrow {OA}  + 2\overrightarrow {OB}  = \overrightarrow {OA}  + \overrightarrow {OD}  = \overrightarrow {OE} \) với \(E\) là điểm thứ tư của hình bình hành \(OAED\)

Ta có: tứ giác \(OAED\) là hình bình hành

Mặt khác \(\widehat {DOA} = {90^ \circ }\)

Nên tứ giác \(OAED\) là hình chữ nhật

Xét hình chữ nhật \(OAED\) có:

\( \Rightarrow \) \(\left| {\overrightarrow {OE} } \right| = OE = \sqrt {O{A^2} + O{D^2}}  = \sqrt {{a^2} + {{\left( {2a} \right)}^2}}  = a\sqrt 5 \)

+) Lấy điểm \(F\) đối xứng với \(B\) qua \(D\) và \(G\) đối xứng với \(O\) qua \(A\)

\( \Rightarrow \) \(2\overrightarrow {OA}  = \overrightarrow {OG} ,\) \(3\overrightarrow {OB}  = \overrightarrow {OF} ,\) \(OG = 2a,\)\(OF = 3a\)

Ta có: \(2\overrightarrow {OA}  - 3\overrightarrow {OB}  = \overrightarrow {OG}  - \overrightarrow {OF}  = \overrightarrow {FG} \)

Xét \(\Delta OFG\) vuông tại \(O\) có:

\( \Rightarrow \) \(\left| {\overrightarrow {FG} } \right| = FG = \sqrt {O{F^2} + O{G^2}}  = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {2a} \right)}^2}}  = a\sqrt {13} \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"