Giải bài 4.24 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:47

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M( - 2;1)\) và \(N(4;5).\)

a) Tìm tọa độ của điểm \(P\) thuộc \(Ox\) sao cho \(PM = PN.\)

b) Tìm tọa độ của điểm \(Q\) sao cho \(\overrightarrow {MQ}  = 2\overrightarrow {PN} .\)

c) Tìm tọa độ của điểm \(R\) thỏa mãn \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 .\) Từ đó suy ra \(P,\,\,Q,\,\,R\) thẳng hàng.

Lời giải chi tiết

a)  Vì điểm \(P\) thuộc \(Ox\) nên tọa độ điểm \(P\) là: \(P(x;0)\)

Ta có: \(PM = PN\,\, \Leftrightarrow \,\,\left| {\overrightarrow {PM} } \right| = \left| {\overrightarrow {PN} } \right|\)

        \(\begin{array}{l} \Leftrightarrow \,\,\sqrt {{{\left( {x + 2} \right)}^2} + {{\left( {0 - 1} \right)}^2}}  = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {0 - 5} \right)}^2}} \\ \Leftrightarrow \,\,\sqrt {{x^2} + 4x + 4 + 1}  = \sqrt {{x^2} - 8x + 16 + 25} \\ \Leftrightarrow \,\,{x^2} + 4x + 5 = {x^2} - 8x + 41\\ \Leftrightarrow \,\,12x = 36\,\, \Leftrightarrow \,\,x = 3\end{array}\)

Vậy \(P(3;0)\)

b) Gọi tọa độ điểm \(Q\) là: \(Q(x;y)\)

Ta có: \(\overrightarrow {MQ}  = 2\overrightarrow {PN} \,\, \Leftrightarrow \,\,(x + 2;y - 1) = 2(4 - 3;5 - 0)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( {x + 2;y - 1} \right) = (2;10)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x + 2 = 2}\\{y - 1 = 10}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 11}\end{array}} \right.} \right.\end{array}\)

Vậy \(Q(0;11)\)

c) Gọi tọa độ điểm \(R\) là: \(R(x;y)\)

Ta có: \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 \,\, \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + 2\left( {4 - x;5 - y} \right) = \left( {0;0} \right)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + \left( {8 - 2x;10 - 2y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left( {6 - 3x;11 - 3y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6 - 3x = 0}\\{11 - 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = \frac{{11}}{3}}\end{array}} \right.} \right.\end{array}\)

Vậy \(R\left( {2;\frac{{11}}{3}} \right)\)

Ta có: \(\overrightarrow {PQ}  = \left( { - 3;11} \right),\,\,\overrightarrow {PR}  = \left( { - 1;\frac{{11}}{3}} \right)\) \( \Rightarrow \) \(\overrightarrow {PQ} \) và \(\overrightarrow {PR} \) cùng phương

\( \Rightarrow \) \(P,\,\,Q,\,\,R\) thẳng hàng

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"