Giải bài 4.22 trang 58 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:48

Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(M(4;0),\,\,N(5;2)\) và \(P(2;3).\) Tìm tọa độ các đỉnh của tam giác \(ABC,\) biết \(M,\,\,N,\,\,P\) theo thứ tự là trung điểm các cạnh \(BC,\,\,CA,\,\,AB.\)

Lời giải chi tiết

Ta có: \(MN,\,\,NP,\,\,MP\) là đường trung bình của \(\Delta ABC\)

\( \Rightarrow \) \(MN\)//\(AB\), \(NP\)//\(BC\), \(MP\)//\(AC\).

\( \Rightarrow \) \(APMN\), \(BPNM\), \(CMPN\) là hình bình hành

Xét hình bình hành \(APMN\) có:

\(\begin{array}{l}\overrightarrow {OA}  = \overrightarrow {OP}  + \overrightarrow {ON}  - \overrightarrow {OM} \\ \Rightarrow \overrightarrow {OA}  = (2;3) + (5;2) - (4;0) = (3;5)\end{array}\)

\( \Rightarrow \) Tọa độ điểm \(A\) là: \(A(3;5).\)

Xét hình bình hành \(BPNM\) có:

\(\begin{array}{l}\overrightarrow {OB}  = \overrightarrow {OP}  + \overrightarrow {OM}  - \overrightarrow {ON} \\ \Rightarrow \overrightarrow {OB}  = (2;3) + (4;0) - (5;2) = (1;1)\end{array}\)

\( \Rightarrow \) Tọa độ điểm \(B\) là: \(B(1;1).\)

Xét hình bình hành \(CMPN\) có:

\(\begin{array}{l}\overrightarrow {OC}  = \overrightarrow {ON}  + \overrightarrow {OM}  - \overrightarrow {OP} \\ \Rightarrow \overrightarrow {OC}  = (5;2) + (4;0) - (2;3) = (7; - 1)\end{array}\)

\( \Rightarrow \) Tọa độ điểm \(C\) là: \(C(7; - 1).\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"