Giải bài 4.61 trang 70 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:28:56

Đề bài

Cho tam giác \(ABC\) có \(AB = 4,\,\,AC = 5\) và \(\widehat {CAB} = {60^ \circ }.\)

a) Tính tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} ,\,\,\overrightarrow {AB} .\overrightarrow {BC} .\)

b) Lấy các điểm \(M,\,\,N\) thỏa mãn \(2\overrightarrow {AM}  + 3\overrightarrow {MC}  = \overrightarrow 0 \) và \(\overrightarrow {NB}  + x\overrightarrow {NC}  = \overrightarrow 0 \,\,\left( {x \ne  - 1} \right).\) Xác định \(x\) sao cho \(AN\) vuông góc với \(BM.\)

Lời giải chi tiết

a)      Ta có: \(\overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos \widehat {CAB} = 4.5.\cos {60^ \circ } = 10\)

\(\overrightarrow {AB} .\overrightarrow {BC}  = \overrightarrow {AB} \left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right) = \overrightarrow {AB} .\overrightarrow {AC}  - {\overrightarrow {AB} ^2} = 10 - {4^2} =  - 6\)

b)     Ta có: \(2\overrightarrow {AM}  + 3\overrightarrow {MC}  = \overrightarrow 0 \)

\( \Leftrightarrow \) \(2\left( {\overrightarrow {AB}  + \overrightarrow {BM} } \right) + 3\left( {\overrightarrow {BC}  - \overrightarrow {BM} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \) \(\overrightarrow {BM}  =  - 2\overrightarrow {AB}  - 3\overrightarrow {BC}  = 2\overrightarrow {AB}  + 3\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right) =  - \overrightarrow {AB}  + 3\overrightarrow {AC} \)     (1)

Ta có: \(\overrightarrow {NB}  + x\overrightarrow {NC}  = \overrightarrow 0 \)

\( \Leftrightarrow \) \(\left( {\overrightarrow {AB}  - \overrightarrow {AN} } \right) + x\left( {\overrightarrow {AC}  - \overrightarrow {AN} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN}  = \overrightarrow {AB}  + x\overrightarrow {AC} \)            (2)

Từ (1) và (2) \( \Rightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN} .\overrightarrow {BM}  = \left( {\overrightarrow {AB}  + x\overrightarrow {AC} } \right)\left( { - \overrightarrow {AB}  + 3\overrightarrow {AC} } \right)\)

\( \Leftrightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN} .\overrightarrow {BM}  =  - {\overrightarrow {AB} ^2} + 3\overrightarrow {AB} .\overrightarrow {AC}  - x\overrightarrow {AC} .\overrightarrow {AB}  + 3x{\overrightarrow {AC} ^2}\)

\( \Leftrightarrow \) \(\left( {1 + x} \right)\overrightarrow {AN} .\overrightarrow {BM}  =  - 16 + 3.10 - x.10 + 3x.25 = 65x + 14\)

Để \(AN \bot BM\) \( \Leftrightarrow \) \(\overrightarrow {AN} .\overrightarrow {BM}  = 0\)

\( \Leftrightarrow \) \(65x + 14 = 0\) \( \Leftrightarrow \) \(x =  - \frac{{14}}{{64}}\) (thỏa mãn)

Vậy \(x =  - \frac{{14}}{{64}}\) thì \(AN \bot BM\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"