Giải bài 6.1 trang 6 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:19

Đề bài

Xét hai đại lượng x, y phụ thuộc vào nhau theo các hệ thức dưới đây. Những trường hợp nào thì y là một hàm số của x?

a) \({x^2} + y = 4\)

b) \(4x + 2y = 6\)   

c) \(x + {y^2} = 4\)   

d) \(x - {y^3} = 0\)

Phương pháp giải - Xem chi tiết

Bước 1: Biến đổi đại lượng y theo x

Bước 2: Dựa vào định nghĩa hàm số để kết luận

y là hàm số của x nếu với mỗi \(x \in D\) chỉ cho duy nhất một giá trị \(y \in \mathbb{R}\) tương ứng.

Lời giải chi tiết

Các trường hợp a, b, d thì y là hàm số của x

a) \({x^2} + y = 4\) \( \Leftrightarrow y =  - {x^2} + 4\).

Ta thấy với mỗi \(x \in \mathbb{R}\) chỉ cho duy nhất một giá trị y tương ứng => \(y =  - {x^2} + 4\) là một hàm số.

b) \(4x + 2y = 6\) \( \Leftrightarrow y =  - 2x + 3\).

Ta thấy với mỗi \(x \in \mathbb{R}\) chỉ cho duy nhất một giá trị y tương ứng => \(y =  - 2x + 3\) là một hàm số.

c) \(x + {y^2} = 4\) \( \Leftrightarrow {y^2} = 4 - x\).

Lấy x = 0 ta có \({y^2} = 4 \Leftrightarrow y = 2\) hoặc y = -2.

Vậy x = 0 cho ta hai giá trị của y tương ứng => \({y^2} = 4 - x\) không là hàm số

d) \(x - {y^3} = 0\) \( \Leftrightarrow {y^3} = x \Leftrightarrow y = \sqrt[3]{x}\).

Ta thấy với mỗi \(x \in \mathbb{R}\) chỉ cho duy nhất một giá trị y tương ứng nên \(y = \sqrt[3]{x}\) là một hàm số.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"