Giải bài 6.14 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:21

Đề bài

Tìm parabol \(y = a{x^2} + bx + 2\), biết rằng parabol đó

a) Đi qua hai điểm \(M(1;5)\) và \(N( - 2;8)\)

b) Đi qua điểm \(A(3; - 4)\) và có trục đối xứng \(x =  - \frac{3}{2}\)

c) Có đỉnh \(I(2; - 2)\)

Phương pháp giải - Xem chi tiết

Bước 1: Nếu biết tọa độ điểm thuộc đồ thị (kể cả đỉnh) thay tọa độ các điểm vào hàm số

Bước 2: Nếu biết PT trục đối xứng x = c hay hoành độ đỉnh parabol ta được \( - \frac{b}{{2a}} = c\).

Bước 3: Giải các PT để tìm hai giá trị a, b tương ứng

Lời giải chi tiết

a) Thay tọa độ điểm \(M(1;5)\) và \(N( - 2;8)\) vào hàm số ta có hệ PT:

\(\left\{ \begin{array}{l}5 = a + b + 2\\8 = 4a - 2b + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 3\\4a - 2b = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\end{array} \right.\)

Vậy hàm số có dạng \(y = 2{x^2} + x + 2\)

b) Thay tọa độ điểm \(A(3; - 4)\) ta có PT: \(9a + 3b + 2 =  - 4 \Leftrightarrow 3a + b =  - 2\)

Parabol có trục đối xứng \(x =  - \frac{3}{2}\) \( \Rightarrow \) \( - \frac{b}{{2a}} =  - \frac{3}{2} \Leftrightarrow 3a - b = 0\)

Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}3a + b =  - 2\\3a - b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{1}{3}\\b =  - 1\end{array} \right.\)

Vậy hàm số có dạng \(y =  - \frac{1}{3}{x^2} - x + 2\)

c) Parabol có đỉnh \(I(2; - 2)\) \( \Rightarrow  - \frac{b}{{2a}} = 2 \Leftrightarrow 4a + b = 0\)

Thay tọa độ đỉnh \(I(2; - 2)\) vào hàm số ta có PT: \(4a + 2b + 2 =  - 2 \Leftrightarrow 2a + b =  - 2\)

Khi đó ta có hệ PT: \(\left\{ \begin{array}{l}4a + b = 0\\2a + b =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 4\end{array} \right.\)

Vậy hàm số có dạng: \(y = {x^2} - 4x + 2\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"