Giải bài 6.12 trang 14 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:22

Đề bài

Với mỗi hàm số bậc hai cho dưới đây: \(y = f(x) =  - {x^2} - x + 1\);  \(y = g(x) = {x^2} - 8x + 8\)

Hãy thực hiện các yêu cầu sau:

a) Viết lại hàm số bậc hai dưới dạng \(y = a{(x - h)^2} + k\)

b) Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của hàm số

c) Vẽ đồ thị của hàm số

Lời giải chi tiết

a) Ta có:

\(y = f(x) =  - {x^2} - x + 1 \Leftrightarrow f(x) =  - \left( {{x^2} + x + \frac{1}{4}} \right) + \frac{5}{4} \Leftrightarrow f(x) =  - {\left( {x + \frac{1}{2}} \right)^2} + \frac{5}{4}\)

\(y = g(x) = {x^2} - 8x + 8 \Leftrightarrow g(x) = {x^2} - 8x + 16 - 8 \Leftrightarrow g(x) = {(x - 4)^2} - 8\)

b) Ta có:

\(f(x) =  - {\left( {x + \frac{1}{2}} \right)^2} + \frac{5}{4} \le \frac{5}{4}\) \( \Rightarrow \) GTLN của f(x) là \(\frac{5}{4}\) đạt được khi \(x =  - \frac{1}{2}\)

\(g(x) = {(x - 4)^2} - 8 \ge  - 8 \Rightarrow \) GTNN của g(x) là -8 đạt được khi x = 4

c)

- Đồ thị hàm số \(y =  - {x^2} - x + 1\) là đường parabol có a = -1 < 0 nên có bề lõm quay xuống dưới.

Đỉnh \(I\left( { - \frac{1}{2};\frac{5}{4}} \right)\), trục đối xứng x = \( - \frac{1}{2}\). Giao điểm của parabol với trục Oy là điểm (0 ; 1) và cắt trục Ox tại 2 điểm có hoành độ \(x = \frac{{ - 1 - \sqrt 5 }}{2}\) và \(x = \frac{{ - 1 + \sqrt 5 }}{2}\)

  

- Đồ thị hàm số \(y = {x^2} - 8x + 8\) là đường parabol có a = 1 > 0 nên có bề lõm quay lên trên

Đỉnh \(I(4; - 8)\), trục đối xứng x = 4. Giao điểm của parabol với trục Oy là điểm (0 ; 8) và cắt trục Ox tại 2 điểm có hoành độ \(x = 4 - 2\sqrt 2 \) và \(x = 4 + 2\sqrt 2 \)

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"