Giải bài 6.25 trang 18 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:24

Đề bài

Một công ti đồ gia dụng sản xuất bình đựng nước thấy rằng khi đơn giá của bình đựng nước là x nghìn đồng thì doanh thu R (tính theo đơn vị nghìn đồng) sẽ là \(R(x) =  - 560{x^2} + 50000x\)

a) Theo mô hình doanh thu này, thì đơn giá nào là quá cao dẫn đến doanh thu từ việc bán bình đựng nước bằng 0 (tức là sẽ không có người mua)?

b) Với khoảng đơn giá nào của bình đựng nước thì doanh thu từ việc bán bình đựng nước vượt mức 1 tỉ đồng?

Phương pháp giải - Xem chi tiết

Bước 1: Giải PT R(x) = 0 ta thu được đơn giá x khiến doanh thu bằng 0

Bước 2: Giải BPT R(x) > 1 000 000 ta tìm được khoảng của x để doanh thu lớn hơn 1 tỉ đồng

Lời giải chi tiết

a) Ta có: \(R(x) = 0 \Leftrightarrow  - 560{x^2} + 50000x = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{625}}{7}\\x = 0\end{array} \right.\) \( \Rightarrow x \approx 89\)

Vậy với đơn giá khoảng 89 nghìn đồng thì không có doanh thu bán bình đựng nước.

b) Ta có:

\(R(x) > 1000000 \Leftrightarrow  - 560{x^2} + 50000x > 1000000\)\( \Leftrightarrow 7{x^2} - 625x + 12500 < 0 \Leftrightarrow 30,25 < x < 59,04\)

Vậy với đơn giá từ khoảng 31 nghìn đồng đến 59 nghìn đồng thì doanh thu bán bình đựng nước vượt mức 1 tỉ đồng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"