Giải bài 6.21 trang 18 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:26

Đề bài

Xét dấu các tam thức bậc hai sau:

a) \(f(x) =  - {x^2} + 6x + 7\)     

b) \(g(x) = 3{x^2} - 2x + 2\)

c) \(h(x) =  - 16{x^2} + 24x - 9\)

d) \(k(x) = 2{x^2} - 6x + 1\)

Phương pháp giải - Xem chi tiết

Bước 1: Tính giá trị của ∆ (∆’), xét dấu hệ số a và ∆ (∆’)

Bước 2: Kết luận về dấu của tam thức bậc hai đã cho

Lời giải chi tiết

a) \(f(x) =  - {x^2} + 6x + 7\) có ∆’ = 16 > 0, a = -1 < 0 và có 2 nghiệm phân biệt \({x_1} =  - 1\); \({x_2} = 7\)

Do đó ta có bảng xét dấu f(x):

 

Suy ra \(f(x) > 0\)với mọi \(x \in ( - 1;7)\) và \(f(x) < 0\) với mọi \(x \in ( - \infty ; - 1) \cup (7; + \infty )\)

b) \(g(x) = 3{x^2} - 2x + 2\) có ∆’ = -5 < 0 và a = 3 > 0 nên g(x) > 0 với mọi \(x \in \mathbb{R}\)

c) \(h(x) =  - 16{x^2} + 24x - 9\) có ∆’ = 0 và a = -16 < 0 nên h(x) có nghiệm kép \(x = \frac{3}{4}\) và \(h(x) < 0\) với mọi \(x \ne \frac{3}{4}\)

d) \(k(x) = 2{x^2} - 6x + 1\) có ∆’ = 7 > 0, a = 2 > 0 và có 2 nghiệm phân biệt \({x_1} = \frac{{3 - \sqrt 7 }}{2};{x_2} = \frac{{3 + \sqrt 7 }}{2}\)

Do đó ta có bảng xét dấu k(x):

 

Suy ra k(x) > 0 với mọi \(x \in \left( { - \infty ;\frac{{3 - \sqrt 7 }}{2}} \right) \cup \left( {\frac{{3 + \sqrt 7 }}{2}; + \infty } \right)\) và k(x) < 0 với mọi \(x \in \left( {\frac{{3 - \sqrt 7 }}{2};\frac{{3 + \sqrt 7 }}{2}} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"