Giải bài 6.30 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:27

Đề bài

Giải các phương trình sau:

a) \(\sqrt {2x - 3}  = x - 3\) 

b) \((x - 3)\sqrt {{x^2} + 4}  = {x^2} - 9\)

Phương pháp giải - Xem chi tiết

a) Giải PT dạng \(\sqrt {ax + b}  = cx + d\) (1)

Bước 1: Bình phương 2 vế của (1) ta được PT \({c^2}{x^2} + (2dc - a)x + ({d^2} - b) = 0\) (2)

Bước 2: Giải PT (2)

Bước 3: Thay các nghiệm vừa tìm được ở bước 2 vào vế phải của PT (1) để tìm ra các nghiệm thỏa mãn vế phải ≥ 0 rồi kết luận

b)

Bước 1: Chuyển x2 – 9 sang vế trái cho vế phải bằng 0 rồi biến đổi PT đã cho thành phương trình tích

Bước 2: Giải phương trình tích vừa tìm được rồi kết luận nghiệm của PT đã cho

Lời giải chi tiết

a) \(\sqrt {2x - 3}  = x - 3\) (1)

Bình phương 2 vế của (1) ta được:

\(2x - 3 = {x^2} - 6x + 9 \Leftrightarrow {x^2} - 8x + 12 = 0 \Leftrightarrow x = 2\) hoặc x = 6

+) Thay x = 2 vào vế phải PT (1): 2 – 3 = -1 < 0

+) Thay x = 5 vào vế phải PT (1): 6 – 3 = 3 > 0

Vậy PT (1) nghiệm duy nhất là x = 6

b) \((x - 3)\sqrt {{x^2} + 4}  = {x^2} - 9\) \( \Leftrightarrow (x - 3)\sqrt {{x^2} + 4}  - ({x^2} - 9) = 0 \Leftrightarrow (x - 3)\sqrt {{x^2} + 4}  - (x - 3)(x + 3) = 0\)

                                    \( \Leftrightarrow (x - 3)(\sqrt {{x^2} + 4}  - x - 3) = 0\)

TH1: \(x - 3 = 0 \Leftrightarrow x = 3\)

TH2: \(\sqrt {{x^2} + 4}  - x - 3 = 0\) \(\sqrt {{x^2} + 4}  = x + 3\) (2)

Bình phương 2 vế của (2) ta được:

\({x^2} + 4 = {x^2} + 6x + 9 \Leftrightarrow 6x =  - 5 \Leftrightarrow x =  - \frac{5}{6}\)

+) Thay \(x =  - \frac{5}{6}\)  vào vế phải PT (2): \( - \frac{5}{6} + 3 = \frac{{13}}{6} > 0\)

Vậy PT đã cho có hai nghiệm phân biệt là \(x = 3;x =  - \frac{5}{6}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"