Giải bài 6.29 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:27

Đề bài

Giải các phương trình sau:

a) \(\sqrt {2{x^2} - 13x + 16}  = 6 - x\)   

b) \(\sqrt {3{x^2} - 33x + 55}  = x - 5\) 

c) \(\sqrt { - {x^2} + 3x + 1}  = x - 4\)

Phương pháp giải - Xem chi tiết

Giải phương trình dạng \(\sqrt {a{x^2} + bx + c}  = dx + e\) (1)

Bước 1: Bình phương 2 vế của (1) ta được PT \((a - {d^2}){x^2} + (b - 2de)x + (c - {e^2}) = 0\) (2)

Bước 2: Giải PT (2)

Bước 3: Thay các nghiệm vừa tìm được ở bước 2 vào vế phải của PT (1) để tìm ra các nghiệm thỏa mãn vế phải ≥ 0 rồi kết luận

Lời giải chi tiết

a) \(\sqrt {2{x^2} - 13x + 16}  = 6 - x\) (1)

Bình phương 2 vế của (1) ta được:

\(2{x^2} - 13x + 16 = {x^2} - 12x + 36 \Leftrightarrow {x^2} - x - 20 = 0 \Leftrightarrow x =  - 4\) hoặc x = 5

+) Thay x = -4 vào vế phải PT (1): 6- (-4) = 10 > 0

+) Thay x = 5 vào vế phải PT (1): 6 – 5 = 1 > 0

Vậy PT (1) có hai nghiệm phân biệt là x = -4; x = 5

b) \(\sqrt {3{x^2} - 33x + 55}  = x - 5\)         (2)

Bình phương 2 vế của (2) ta được:

\(3{x^2} - 33x + 55 = {x^2} - 10x + 25 \Leftrightarrow 2{x^2} - 23x + 30 = 0 \Leftrightarrow x = \frac{3}{2}\) hoặc x = 10

+) Thay \(x = \frac{3}{2}\) vào vế phải PT (2): \(\frac{3}{2} - 5 =  - \frac{7}{2} < 0\)

+) Thay x = 10 vào vế phải PT (2): 10 – 5 = 5 > 0

Vậy PT (2) có nghiệm duy nhất  x = 10

c) \(\sqrt { - {x^2} + 3x + 1}  = x - 4\) (3)

Bình phương 2 vế PT (3) ta được:

\( - {x^2} + 3x + 1 = {x^2} - 8x + 16 \Leftrightarrow 2{x^2} - 11x + 15 = 0\)\( \Leftrightarrow x = \frac{5}{2}\) hoặc x = 3

+) Thay \(x = \frac{5}{2}\) vào vế phải PT (3): \(\frac{5}{2} - 4 =  - \frac{3}{2} < 0\)

+) Thay x = 3 vào vế phải PT (3): 3 – 4 = -1 < 0

Vậy PT (3) vô nghiệm

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"