Giải bài 6.28 trang 21 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:27

Đề bài

Giải các phương trình sau:

a) \(\sqrt { - {x^2} + 77x - 212}  = \sqrt {{x^2} + x - 2} \)

b) \(\sqrt {{x^2} + 25x - 26}  = \sqrt {x - {x^2}} \)

c) \(\sqrt {4{x^2} + 8x - 37}  = \sqrt { - {x^2} - 2x + 3} \)

Phương pháp giải - Xem chi tiết

Giải PT dạng \(\sqrt {a{x^2} + bx + c}  = \sqrt {d{x^2} + ex + f} \) (1)

Bước 1: Bình phương 2 vế của (1) ta được PT \((a - d){x^2} + (b - 2de)x + (c - {e^2}) = 0\) (2)

Bước 2: Giải PT (2)

Bước 3: Thay các nghiệm vừa tìm được ở bước 2 vào PT (1) để tìm ra các nghiệm thỏa mãn rồi kết luận

Lời giải chi tiết

a) \(\sqrt { - {x^2} + 77x - 212}  = \sqrt {{x^2} + x - 2} \) (1)

Bình phương 2 vế của (1) ta được:

\( - {x^2} + 77x - 212 = {x^2} + x - 2\) \( \Leftrightarrow 2{x^2} - 76x + 210 = 0\)\( \Leftrightarrow x = 3\) hoặc x = 35

+) Thay x = 3 vào PT (1): \(\sqrt { - {3^2} + 77.3 - 212}  = \sqrt {{3^2} + 3 - 2}  \Leftrightarrow \sqrt {10}  = \sqrt {10} \) , thỏa mãn

+) Thay x = 35 vào PT (1): \(\sqrt { - {{35}^2} + 77.35 - 212}  = \sqrt {{{35}^2} + 35 - 2}  \Leftrightarrow \sqrt {1258}  = \sqrt {1258} \), thỏa mãn

Vậy PT (1) có 2 nghiệm là x = 3; x = 35

b) \(\sqrt {{x^2} + 25x - 26}  = \sqrt {x - {x^2}} \) (2)

Bình phương 2 vế của (2) ta được:

\({x^2} + 25x - 26 = x - {x^2} \Leftrightarrow 2{x^2} + 24x - 26 = 0 \Leftrightarrow x =  - 13\) hoặc x = 1

+) Thay x = -13 vào PT (2): \(\sqrt {{{( - 13)}^2} + 25.( - 13) - 26}  = \sqrt {( - 13) - {{( - 13)}^2}}  \Leftrightarrow \sqrt { - 182}  = \sqrt { - 182} \), vô lí

+) Thay x = 1 vào PT (2): \(\sqrt {{1^2} + 25.1 - 26}  = \sqrt {1 - {1^2}}  \Leftrightarrow \sqrt 0  = \sqrt 0 \), thỏa mãn

Vậy PT (2) có nghiệm duy nhất x = 1

c) \(\sqrt {4{x^2} + 8x - 37}  = \sqrt { - {x^2} - 2x + 3} \) (3)

Bình phương 2 vế của (3) ta được:

\(4{x^2} + 8x - 37 =  - {x^2} - 2x + 3 \Leftrightarrow 5{x^2} + 10x - 40 = 0 \Leftrightarrow x =  - 4\) hoặc x = 2

+) Thay x = -4 vào PT (3): \(\sqrt {4.{{( - 4)}^2} + 8.( - 4) - 37}  = \sqrt { - {{( - 4)}^2} - 2.( - 4) + 3}  \Leftrightarrow \sqrt { - 5}  = \sqrt { - 5} \), vô lí

+) Thay x = 2 vào PT (3): \(\sqrt {{{4.2}^2} + 8.2 - 37}  = \sqrt { - {2^2} - 2.2 + 3}  \Leftrightarrow \sqrt { - 5}  = \sqrt { - 5} \), vô lí

Vậy PT (3) vô nghiệm

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"