Giải bài 6.61 trang 27 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:29

Đề bài

Cho hình chữ nhật ABCD có AB = 6 cm, AD = 13 cm. Tìm vị trí điểm M trên cạnh AD sao cho BM = 2MD

Phương pháp giải - Xem chi tiết

Bước 1: Gọi x là độ dài AM. Biểu diễn độ dài BM và MD theo x

Bước 2: Lập phương trình ẩn x theo giả thiết BM = 2MD

Bước 3: Giải phương trình vừa tìm được ở bước 2 rồi kết luận

Lời giải chi tiết

Gọi x (cm) (0 < x < 13) là độ dài AM.

Khi đó MD = 13 – x (cm) và BM = \(\sqrt {A{M^2} + A{B^2}}  = \sqrt {{x^2} + 36} \) (cm)

Theo giả thiết, BM = 2MD \( \Leftrightarrow \sqrt {{x^2} + 36}  = 2(13 - x)\) (*)

Bình phương 2 vế PT (*) ta có:

\({x^2} + 36 = 4{x^2} - 104x + 676 \Leftrightarrow 3{x^2} - 104x + 640 = 0 \Leftrightarrow x = \frac{{80}}{3}\) hoặc x = 8

Kết hợp với điều kiện, PT (*) có nghiệm duy nhất x = 8

Vậy với AM = 8 cm thì BM = 2MD.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"