Giải bài 6.50 trang 25 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:35

Đề bài

Bất phương trình \(m{x^2} - (2m - 1)x + m + 1 < 0\) (1) vô nghiệm khi và chỉ khi

A. \(m \le \frac{1}{8}\)

B. \(m > \frac{1}{8}\)   

C. \(m < \frac{1}{8}\)   

D. \(m \ge \frac{1}{8}\)

Phương pháp giải - Xem chi tiết

Bước 1: Xét m = 0, BPT (1) trở thành BPT bậc nhất ẩn x luôn có nghiệm => Loại điều kiện m = 0

Bước 2: Xét m ≠ 0, \(m{x^2} - (2m - 1)x + m + 1 < 0\) vô nghiệm \( \Leftrightarrow \)\(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)

Bước 3: Kết luận

Lời giải chi tiết

+) Với m = 0, BPT (1) có dạng \(x + 1 < 0\) \( \Leftrightarrow x <  - 1\)

Suy ra BPT (1) có tập nghiệm \(\left( { - \infty ; - 1} \right)\) nên m = 0 không thỏa mãn

+) Với m ≠ 0, BPT (1) là BPT bậc hai ẩn x

Khi đó BPT (1) vô nghiệm khi và chỉ khi \(m{x^2} - (2m - 1)x + m + 1 \ge 0,\forall x \in \mathbb{R}\)

\( \Leftrightarrow m > 0\) và ∆ ≤ 0

Xét ∆ ≤ 0 \( \Leftrightarrow {(2m - 1)^2} - 4m(m + 1) \le 0 \Leftrightarrow  - 8m + 1 \le 0 \Leftrightarrow m \ge \frac{1}{8}\)

Vậy với \(m \ge \frac{1}{8}\) thì BPT (1) vô nghiệm

\( \Rightarrow \) Chọn D

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"