Đề bài
Phương trình \((m + 2){x^2} - 3x + 2m - 3 = 0\) có hai nghiệm trái dấu khi và chỉ khi
A. \(m < - 2\) hoặc \(m > \frac{3}{2}\)
B. \(m > \frac{3}{2}\)
C. \( - 2 < m < \frac{3}{2}\)
D. \(m < 2\)
Lời giải chi tiết
PT \((m + 2){x^2} - 3x + 2m - 3 = 0\) (1) là PT bậc hai khi và chỉ khi \(m + 2 \ne 0 \Leftrightarrow m \ne - 2\)
PT (1) có 2 nghiệm trái dấu khi và chỉ khi \((m + 2)(2m - 3) < 0 \Leftrightarrow 2{m^2} + m - 6 < 0 \Leftrightarrow - 2 < m < \frac{3}{2}\)
Kết hợp các điều kiện, với \( - 2 < m < \frac{3}{2}\) thì PT (1) có 2 nghiệm trái dấu
\( \Rightarrow \) Chọn C