Giải bài 7.8 trang 32 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:45

Đề bài

Trong mặt phẳng \(Oxy\), cho hình vuông ABCD có \(A\left( { - 1;0} \right)\) và \(B\left( {1;2} \right)\)

a) Lập phương trình đường thẳng BC

b) Tìm tọa độ của điểm C biết rằng hoành hộ của điểm C là số dương

Phương pháp giải - Xem chi tiết

+ Phương trình tổng quát đường thẳng đi qua \(M\left( {{x_1},{y_1}} \right)\) nhận \(\overrightarrow {{a_1}}  = \left( {a;b} \right)\) là vecto pháp tuyến là: \(a\left( {x - {x_1}} \right) + b\left( {y - {y_1}} \right) = 0\)

Lời giải chi tiết

a) Phương trình đường thẳng BC đi qua \(B\left( {1;2} \right)\) và nhận \(\overrightarrow {AB}  = \left( {2;2} \right) = 2\left( {1;1} \right)\) là vecto pháp tuyến

Phương trình tổng quát của BC: \(1\left( {x - 1} \right) + 1\left( {y - 2} \right) = 0 \Rightarrow x + y - 3 = 0\)

b) C thuộc đường thẳng BC \( \Rightarrow C\left( {t;3 - t} \right)\)

+ \(AB = \sqrt {{2^2} + {2^2}}  = 2\sqrt 2 \)

+ \(\overrightarrow {BC}  = \left( {t - 1;1 - t} \right) \Rightarrow BC = \sqrt {{{\left( {t - 1} \right)}^2} + {{\left( {1 - t} \right)}^2}}  = \left| {t - 1} \right|\sqrt 2 \)

+ \(AB = BC \Rightarrow \left| {t - 1} \right|\sqrt 2  = 2\sqrt 2  \Rightarrow \left| {t - 1} \right| = 2 \Rightarrow \left[ \begin{array}{l}t = 3\\t =  - 1\end{array} \right.\)

Với hoành độ của C là số dương => \(C\left( {3;0} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"