Giải bài 7.12 trang 38 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:48

Đề bài

Cho hai đường thẳng \(d:2x + y + 1 = 0\) và \(k:2x + 5y - 3 = 0\)

a) Chứng minh rằng hai đường thẳng đó cắt nhau. Tìm giao điểm của hai đường thẳng đó.

b) Tính tan của góc giữa hai đường thẳng

Phương pháp giải - Xem chi tiết

+ Xét vị trí các đường thẳng qua các cặp vectơ chỉ phương và vectơ pháp tuyến của mỗi đường thẳng. Tìm giao điểm nếu có bằng cách xét phương trình hoành độ

+ Gọi \({k_1}\) và \({k_2}\) là hệ số góc của hai đường thẳng, ta có \(\tan \alpha  = \left| {\frac{{{k_1} - {k_2}}}{{1 + {k_1}{k_2}}}} \right|\)

Lời giải chi tiết

a) Vectơ pháp tuyến của d và k lần lượt là: \(\overrightarrow {{n_1}}  = \left( {2;1} \right),\overrightarrow {{n_2}}  = \left( {2;5} \right)\)

\(\Rightarrow \) Hai đường thẳng cắt nhau

Tìm giao điểm: \(\left\{ \begin{array}{l}2x + y + 1 = 0\\2x + 5y - 3 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x =  - 1\\y = 1\end{array} \right. \Rightarrow M\left( { - 1;1} \right)\)

b) Gọi \({k_1}\) và \({k_2}\) là hệ số góc của hai đường thẳng

+ \(d:2x + y + 1 = 0 \Rightarrow y =  - 2x - 1 \Rightarrow {k_1} =  - 2\)

+ \(k:2x + 5y - 3 = 0 \Rightarrow y =  - \frac{2}{5}x + \frac{3}{5} \Rightarrow {k_1} =  - \frac{2}{5}\)

+ Ta có: \(\tan \alpha  = \left| {\frac{{{k_1} - {k_2}}}{{1 + {k_1}{k_2}}}} \right| = \left| {\frac{{ - 2 + \frac{2}{5}}}{{1 + \frac{4}{5}}}} \right| = \frac{8}{9}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"