Giải bài 7.26 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:49

Đề bài

Cho đường thẳng \(\Delta :x\sin {\alpha ^ \circ } + ycos{\alpha ^ \circ } - 1 = 0\), trong đó \(\alpha \) là một số thực thuộc khoảng \(\left( {0;180} \right)\)

a) Tính khoảng cách từ gốc toạ độ O đến đường thẳng \(\Delta \)

b) Chứng minh rằng khi \(\alpha \) thay đổi, tồn tại một đường tròn cố định luôn tiếp xúc với đường thẳng d

Lời giải chi tiết

a) \(d\left( {O,\Delta } \right) = \frac{{\left| { - 1} \right|}}{{\sqrt {{{\left( {\sin {\alpha ^ \circ }} \right)}^2} + {{\left( {cos{\alpha ^ \circ }} \right)}^2}} }} = 1\)

b) Gọi \(\left( C \right)\) là đường tròn tâm O(0;0) bán kính \(R = 1\), đường tròn này cố định.

Ta chứng minh đường tròn này tiếp xúc với đường thẳng d với mọi \(\alpha\).

Vì \(d\left( {O,\Delta } \right) = 1 = R, \forall \alpha\) nên \(\left( C \right)\) luôn tiếp xúc với \(\Delta \). Vậy phương trình đường tròn \(\left( C \right)\) là \({x^2} + {y^2} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"