Giải bài 7.24 trang 42 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:50

Đề bài

Cho điểm \(A\left( {4;2} \right)\) và hai đường thẳng \(d:3x + 4y - 20;d':2x + y = 0\)

a) Viết phương trình đường thẳng \(\Delta \) đi qua A và vuông góc với đường thẳng d

b) Viết phương trình đường tròn \(\left( C \right)\) có tâm thuộc đường thẳng d’ và tiếp xúc với d tại A

Phương pháp giải - Xem chi tiết

Áp dụng các quan hệ vuông góc và song song để tìm ra các vector pháp tuyến và chỉ phương của đường thẳng

Lời giải chi tiết

a)  \(\Delta  \bot d \Rightarrow \overrightarrow {{n_d}}  = \overrightarrow {{u_\Delta }}  = \left( {3;4} \right) \Rightarrow \overrightarrow {{n_\Delta }}  = \left( {4; - 3} \right)\)

Phương trình đưởng thẳng \(\Delta \) có: \(\overrightarrow {{n_\Delta }}  = \left( {4; - 3} \right)\) và đi qua \(A\left( {4;2} \right)\) là \(4\left( {x - 4} \right) - 3\left( {y - 2} \right) = 0 \Rightarrow 4x - 3y - 10 = 0\)

b) Viết phương trình đường tròn \(\left( C \right)\) có tâm thuộc đường thẳng d’ và tiếp xúc với d tại A

+ Tâm I thuộc đường thẳng d’ \( \Rightarrow I\left( {t; - 2t} \right)\)

+ Phương trình đưởng tròn tiếp xúc với d tại A \( \Rightarrow IA \bot d' \Rightarrow \overrightarrow {AI} .\overrightarrow {{v_d}}  = 0 \Rightarrow \left( {t - 4; - 2t - 2} \right).\left( {1; - 2} \right) = 0 \Rightarrow t - 4 + 4t + 4 = 0 \Rightarrow t = 0\)

\( \Rightarrow I\left( {0;0} \right)\)

+ \(IA = R = \sqrt {{2^2} + {4^2}}  = 2\sqrt 5 \)

+ Phương trình đường tròn: \({x^2} + {y^2} = 20\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"