Giải bài 7.33 trang 46 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:29:52

Đề bài

Viết phương trình chính tắc của parabol \(\left( P \right)\), biết rằng \(\left( P \right)\) có đường chuẩn là đường thẳng \(\Delta :x + 4 = 0\). Tìm tọa độ điểm M thuộc \(\left( P \right)\) sao cho khoảng cách từ M đến tiêu điểm của \(\left( P \right)\) bằng 5

Phương pháp giải - Xem chi tiết

+ Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x =  - \frac{p}{2}\)

+ Dựa vào khoảng cách từ M đến tiêu điểm của \(\left( P \right)\) bằng 5

Lời giải chi tiết

+ Phương trình chính tắc của \(\left( P \right)\) có dạng \({y^2} = 2px\), trong đó \(p > 0\)

+ \(\left( P \right)\) có đường chuẩn \(\Delta :x + 4 = 0 \Rightarrow x =  - 4 \Rightarrow  - \frac{p}{2} =  - 4 \Rightarrow p = 8\)

\( \Rightarrow \) Phương trình chính tắc của \(\left( P \right)\) là \({y^2} = 16x\)

+ Gọi \(M\left( {{x_0};{y_0}} \right)\). Có \(M \in \left( P \right)\) nên ta có:

\(d\left( {M,\Delta } \right) = MF = 5 = \frac{{\left| {{x^0} + 4} \right|}}{{\sqrt {{1^2} + 0} }} \Rightarrow \left| {{x^0} + 4} \right| = 5 \Rightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  - 9\end{array} \right.\)

+ \({x_0} =  - 9 \Rightarrow y_0^2 = 16\left( { - 9} \right) =  - 144\) à Phương trình vô nghiệm

+ \({x_0} = 1 \Rightarrow y_0^2 = 16.1 = 16 \Rightarrow \left[ \begin{array}{l}{y_0} = 4\\{y_0} =  - 4\end{array} \right.\)

Vậy \(M\left( {1;4} \right)\) hoặc \(M\left( {1; - 4} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"