Đề bài
Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7.
Phương pháp giải - Xem chi tiết
Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết
Mỗi xúc xắc có 6 cách xuất hiện số chấm do đó \(n\left( \Omega \right) = 6.6.6 = 216\).
Gọi A là biến cố “tổng số chấm xuất hiện trên ba con xúc xắc bằng 7”.
Chỉ các bộ số \(\left( {1,1,5} \right);\left( {1,2,4} \right) & ;\left( {1,3,3} \right);\left( {2,2,3} \right)\) có tổng bằng 7
Các bộ số \(\left( {1,1,5} \right);\left( {1,3,3} \right);\left( {2,2,3} \right)\) mỗi bộ có 3 hoán vị và bộ số \(\left( {1,2,4} \right)\) có 6 hoán vị nên suy ra \(n\left( A \right) = 3.3 + 6 = 15\).
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{15}}{{216}} = \frac{5}{{72}}\)