Giải bài 9.23 trang 68 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:30:16

Đề bài

Một khách sạn có 6 phòng đơn. Có 10 khách thuê phòng trong đó có 6 nam và 4 nữ. Người quản lí chọn ngẫu nhiên 6 người cho nhận phòng.

a) Xác suất để cả 6 người là nam là:

A. \(\frac{{11}}{{210}}\).             B. \(\frac{1}{{105}}\).                   C. \(\frac{1}{{210}}\).                   D.\(\frac{7}{{210}}\).

b) Xác suất để có 4 nam và 2 nữ là:

A. \(\frac{2}{7}\).                B. \(\frac{3}{7}\).                C. \(\frac{4}{7}\).                D.\(\frac{5}{7}\).

c) Xác suất để có ít nhất 3 nữ là:

A. \(\frac{2}{7}\).                B. \(\frac{3}{7}\).                C. \(\frac{4}{7}\).                D.\(\frac{5}{7}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

Ta có \(n\left( \Omega  \right) = C_{10}^6\).

a) Gọi A là biến cố “chọn được 6 người đều là nam”. Suy ra \(n\left( A \right) = C_6^6 = 1\).

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{{C_{10}^6}} = \frac{1}{{210}}\)

Chọn C

b) Gọi B là biến cố “chọn được 4 nam và 2 nữ”. Suy ra \(n\left( B \right) = C_6^4.C_4^2 = 90\)

Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{90}}{{C_{10}^6}} = \frac{3}{7}\)

Chọn B

c) Gọi C là biến cố “chọn được ít nhất 3 nữ”.

+ Chọn 3 nữ và 3 nam: Có \(C_4^3.C_6^3\) cách

+ Chọn 4 nữ và 2 nam: Có \(C_4^4.C_6^2\) cách

Suy ra \(n\left( C \right) = C_4^3.C_6^3 + C_4^4.C_6^2 = 95\)

Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{{95}}{{C_{10}^6}} = \frac{{19}}{{42}}\)

Chọn D

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"