Giải bài 9.20 trang 68 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:30:16

Đề bài

Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là:

A. \(\frac{5}{{22}}\).                     B. \(\frac{1}{5}\).                C. \(\frac{2}{9}\).                D.\(\frac{7}{{34}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\).

Lời giải chi tiết

Ta có \(n\left( \Omega  \right) = 36\).

Gọi A là biến cố “số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2”.

Khi đó \(A = \left\{ {\left( {1;3} \right),\left( {3;1} \right),\left( {2;4} \right),\left( {4;2} \right),\left( {3;5} \right),\left( {5;3} \right),\left( {4;6} \right),\left( {6;4} \right)} \right\}\). Suy ra \(n\left( A \right) = 8\).

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{8}{{36}} = \frac{2}{9}\)

Chọn C

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"