Giải bài 3 trang 70 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:30:21

Đề bài

Cho tam thức bậc hai với đồ thị là parabol có đỉnh I(1, 4) và đi qua điểm A(2; 3)

a) Xác định các hệ số a, b, c của tam thức bậc hai f(x).

b) Vẽ parabol này.

c) Từ đồ thị đã vẽ ở câu b), hãy cho biết khoảng đồng biến, khoảng nghịch biến và tập giá trị của hàm số y =f(x).

d) Lập bảng xét dấu để giải bất phương trình \(\frac{{f(x)}}{{x - 2}} \ge 0\)

Lời giải chi tiết

a)  Parabol có đỉnh là I(1;4) nên phương trình có dạng \(y = a{(x - 1)^2} + 4\)

 Vì điểm A(2;3) thuộc parabol nên ta có:

\(3 = a{(2 - 1)^2} + 4 \Rightarrow a =  - 1\)

Vậy tam thức cần tìm là \(f(x) =  - {x^2} + 2x + 3\) ta có a= -1, b=2, c=3.

b) Ta có a= -1

   Đỉnh I(1;4), trục đối xứng x=1.

   Giao điểm của parabol với trục Oy là (0,3), với trục Ox là (-1,0) và (3,0)

 

c) Hàm số đồng biến trên khoảng (-∞;1) , nghịch biến trên khoảng (1,+∞)

Tập giá trị của hàm số là (-∞;4]

d) Xét bất phương trình \(\frac{{f(x)}}{{x - 2}} \ge 0\) hay  \(\frac{{ - {x^2} + 2x + 3}}{{x - 2}} \ge 0\)

\(f(x) =  - {x^2} + 2x + 3 = 0 \Leftrightarrow x =  - 1\) hoặc \(x = 3\)

\(x - 2 = 0 \Leftrightarrow x = 2\)

Ta có bảng xét dấu sau:

 Vậy tập nghiệm của bất phương trình đã cho là \(( - \infty ; - 1] \cup (2;3]\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"