Giải bài 18 trang 73 sách bài tập toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:30:24

Đề bài

Khi tham gia một trò chơi bốc thăm trúng thưởng, mỗi người chơi chọn một bộ 6 số đôi một khác nhau từ 45 số: 1, 2, ..., 45, chẳng hạn bạn Bình chọn bộ số {4, 12, 20, 31, 32, 33}. Sau đó, người quản trò bốc thăm ngẫu nhiên 6 quả bóng (không hoàn lại) từ một thùng kín đựng 45 quả bóng như nhau ghi các số 1, 2, ..., 45. Bộ 6 số ghi trên 6 quả bóng đó, gọi là bộ số trúng thưởng. Nếu bộ số của người chơi trùng với 4 số của bộ số trúng thưởng thì người chơi trúng giải nhì. Tính xác suất bạn Bình trúng giải nhì khi chơi.

Lời giải chi tiết

Không gian mẫu Ω là tập hợp tất cả các tập con có 6 phần tử của tập {1,2,..., 44, 45}

\(n(\Omega ) = C_{45}^6 = 8145000\)

Gọi E là biến cố: “Bạn Bình trúng giải nhi”.

 E là tập hợp tất cả các tập con gồm sáu phần tử của tập {1; 2; 3; ...; 45} có tính chất:

- Bốn phần tử của nó thuộc tập {4; 12, 20, 31, 32, 33}

- Hai phần tử còn lại không thuộc tập {4; 12; 20, 31, 32, 33}.

Chọn 4 phần tử trong tập {4; 12, 20, 31, 32, 33}. Có \(C_6^4 = 15\) cách

Chọn 2 phần tử còn lại trong 39 phần tử của tập {1; 2; ..., 44, 45} \{4; 12, 20, 31, 32, 33} có  \(C_{39}^2 = 741\) cách.

 Tập E có 15 . 741=11 115 phần tử.

Vậy xác suất bạn Bình trúng giải nhì khi chơi là: \(P(E) = \frac{{11115}}{{8145000}} = 0,00136\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"