Giải bài 3 trang 13 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:30:35

Đề bài

Điền kí hiệu \(\left( { \in , \notin , \subset , \not\subset , = } \right)\) thích hợp vào chỗ chấm

a) \(0...\left\{ {0;1;2} \right\}\)

b) \(\left\{ {0;1} \right\}...\mathbb{Z}\)

c) \(0...\left\{ {x\left| {{x^2} = 0} \right.} \right\}\)

d) \(\left\{ 0 \right\}...\left\{ {x\left| {{x^2}} \right. = x} \right\}\)

e) \(\emptyset ...\left\{ {x \in \mathbb{R}\left| {{x^2} + 4 = 0} \right.} \right\}\)

g) \(\left\{ {4;1} \right\}...\left\{ {x\left| {{x^2} - 5x + 4 = 0} \right.} \right\}\)

h) \(\left\{ {n;a;m} \right\}...\left\{ {m;a;n} \right\}\)

i) \(\left\{ {nam} \right\}...\left\{ {n;a;m} \right\}\)

Phương pháp giải - Xem chi tiết

+) Tập hợp không có phần tử nào gọi là tập hợp rỗng, kí hiệu \(\emptyset \)

+) Phần tử a thuộc tập hợp A thì ta viết \(a \in A\), ngược lại \(a \notin A\)

+) A là tập hợp con của B nếu mọi phần tử của A đều là phần tử của B, kí hiệu \(A \subset B\), ngược lại \(A \not\subset B\)

+) Hai tập hợp A B gọi là bằng nhau nếu \(A \subset B\)và \(B \subset A\)

Lời giải chi tiết

a) Tập hợp \(\left\{ {0;1;2} \right\}\) chứa 0 nên \(0 \in \left\{ {0;1;2} \right\}\)

b) \(\left\{ {0;1} \right\}\)là một tập hợp và nó là một tập con của tập hợp số nguyên nên \(\left\{ {0;1} \right\} \subset \mathbb{Z}\)

c) \({x^2} = 0\) chỉ có nghiệm duy nhất là \(x = 0\) và 0 là một phần tử nên \(0 \in \left\{ {x\left| {{x^2} = 0} \right.} \right\}\)

d) Phương trình \({x^2} = x\) có hai nghiệm là 0 và 1, mặt khác \(\left\{ 0 \right\}\)là một tập hợp nên \(\left\{ 0 \right\} \subset \left\{ {x\left| {{x^2}} \right. = x} \right\}\)

e) Phương trình \({x^2} + 4 = 0\) vô nghiệm nên \(\emptyset  = \left\{ {x \in \mathbb{R}\left| {{x^2} + 4 = 0} \right.} \right\}\)

g) Ta có: \({x^2} - 5x + 4 = 0 \Leftrightarrow \left( {x - 1} \right)\left( {x - 4} \right) = 0\) có hai nghiệm là 1 và 4 nên  \(\left\{ {4;1} \right\} = \left\{ {x\left| {{x^2} - 5x + 4 = 0} \right.} \right\}\)

h) Các phần tử trong hai tập hợp giống nhau nên \(\left\{ {n;a;m} \right\} = \left\{ {m;a;n} \right\}\)

i) Hai tập hợp này có các phần tử hoàn toàn khác nhau nên \(\left\{ {nam} \right\} \not\subset \left\{ {n;a;m} \right\}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"