Giải bài 5 trang 69 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:31:11

Đề bài

Chứng minh rằng với mọi góc \(x\left( {0^\circ  \le x \le 90^\circ } \right)\), ta đều có:

a) \(\sin x = \sqrt {1 - {{\cos }^2}x} \) 

b) \(\cos x = \sqrt {1 - {{\sin }^2}x} \)

c) \({\tan ^2}x = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}\left( {x \ne 90^\circ } \right)\)               d) \({\cot ^2}x = \frac{{{{\cos }^2}x}}{{{{\sin }^2}x}}\left( {x \ne 0^\circ } \right)\)

Lời giải chi tiết

a) Theo định nghĩa ta có \(\sin x = {y_0},\cos x = {x_0}\)

Với \(\left( {{x_0},{y_0}} \right)\) là tọa độ điểm M sao cho \(\widehat {xOM} = x\)

Ta có \({x^2} + {y^2} = 1 \Leftrightarrow {\sin ^2}x + {\cos ^2}x = 1\)

\( \Rightarrow {\sin ^2}x = 1 - {\cos ^2}x\)

Mà \(0^\circ  \le x \le 90^\circ \) nên \(\sin x > 0\)

\( \Rightarrow \sin x = \sqrt {1 - {{\cos }^2}x} \)

b) Tương tự câu a) ta có:

\(\begin{array}{l}{x^2} + {y^2} = 1 \Leftrightarrow {\sin ^2}x + {\cos ^2}x = 1\\ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x\end{array}\)

Mà \(0^\circ  \le x \le 90^\circ \) nên \(\cos x > 0\)\( \Rightarrow \cos x = \sqrt {1 - {{\sin }^2}x} \)

c) Với \({x_0} \ne 0\) ta có

 \(\tan x = \frac{{{y_0}}}{{{x_0}}} = \frac{{\sin x}}{{\cos x}},\cos x \ne 0\) 

\( \Rightarrow {\tan ^2}x = {\left( {\frac{{\sin x}}{{\cos x}}} \right)^2} \Rightarrow {\tan ^2}x = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}\)  (với \(\cos x \ne 0 \Leftrightarrow x \ne 90^\circ \))   đpcm

c) Với \({y_0} \ne 0\) ta có

 \(\cot x = \frac{{{x_0}}}{{{y_0}}} = \frac{{\cos x}}{{\sin x}},\sin x \ne 0\)  

\( \Rightarrow {\cot ^2}x = {\left( {\frac{{\cos x}}{{\sin x}}} \right)^2} \Rightarrow {\cot ^2}x = \frac{{{{\cos }^2}x}}{{{{\sin }^2}x}}\) (với \(\sin x \ne 0 \Leftrightarrow x \ne 0^\circ \))     đpcm

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"