Giải bài 4 trang 69 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:31:11

Đề bài

Chứng minh rằng trong tam giác ABC ta có:

a) \(\tan B =  - \tan \left( {A + C} \right)\)     

b) \(\sin C = \sin \left( {A + B} \right)\)

Phương pháp giải - Xem chi tiết

Dựa vào mối liên hệ giữa các giá trị lượng giác giữa hai góc phụ nhau, bù nhau

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}\tan \alpha  =  - \tan \left( {180^\circ  - \alpha } \right)\\ \Leftrightarrow \tan B =  - \tan \left( {180^\circ  - B} \right)\end{array}\)

Mặt khác ta có ABC là tam giác nên \(\widehat A + \widehat B + \widehat C = 180^\circ  \Rightarrow 180^\circ  - \widehat B = \widehat A + \widehat C\)

Suy ra \(\tan B =  - \tan \left( {A + C} \right)\)      (đpcm)

b) Ta có:

\(\begin{array}{l}\sin \alpha  = \sin \left( {180^\circ  - \alpha } \right)\\ \Leftrightarrow \sin C = \sin \left( {180^\circ  - C} \right)\end{array}\)

Mặt khác ta có ABC là tam giác nên \(\widehat A + \widehat B + \widehat C = 180^\circ  \Rightarrow 180^\circ  - \widehat C = \widehat A + \widehat B\)

Suy ra \(\sin C = \sin \left( {A + B} \right)\) (đpcm)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"