Giải bài 8 trang 75 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:31:13

Đề bài

Cho tam giác ABC có trọng tâm G. Chứng minh các tam giác GBC, GAB, GAC có diện tích bằng nhau

Lời giải chi tiết

Gọi AH, BK, CI là đường cao của tam giác ABC kẻ từ đỉnh A, B, C

GH’, GK’, GI’ là đường cao của tam giác GBC, GAC, GAB kẻ từ G xuống BC, AC, AB

Ta có:

\({S_{GBC}} = \frac{1}{2}BC.GH';{S_{GAC}} = \frac{1}{2}AC.GK';{S_{GBA}} = \frac{1}{2}BA.GI'\)

G là trọng tâm của tam giác ABC nên \(GH' = \frac{1}{3}AH;GK' = \frac{1}{3}BK;GI' = \frac{1}{3}CI\)

Suy ra \({S_{GBC}} = \frac{1}{6}BC.AH;{S_{GAC}} = \frac{1}{6}AC.BK;{S_{GBA}} = \frac{1}{6}BA.CI\) (1)

Mặt khác ta có \({S_{ABC}} = \frac{1}{2}BC.AH = \frac{1}{2}AB.CI = \frac{1}{2}AC.BK\) (2)

Từ (1) và (2) ta có \({S_{GBC}} = {S_{GAB}} = {S_{GAC}} = \frac{1}{3}{S_{ABC}}\) (đpcm)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"